Finite Element based micromechanical methods are used to study the influence of microscale phase arrangements on the overall and microscale thermomechanical properties of two advanced two-phase materials, duplex steels and unidirectional continuously reinforced metal matrix composites (MMCs). Both inclusion-matrix topologies and interwoven microgeometries are investigated for duplex steels, and the predicted macroscopic transverse elastoplastic responses are correlated with quantitative stereological descriptions of the microgeometries. For the MMCs, the emphasis is put on the influence of the fiber arrangement on the microscale residual stress states of the as-produced material and on their effects on damage mechanisms.

This content is only available via PDF.
You do not currently have access to this content.