In this paper, a recently proposed material model (Sun model) that is based on the lower bound approach of plasticity is extended by introducing a family of dilatant plasticity theories. The yield surfaces change by a combination of isotropic expansion and kinematic translation. The sensitivity of the local necking predictions in biaxially stretched sheets to the curvature of the yield surface in porous materials is addressed. The results of the present analysis obtained by using four material models, the isotropic hardening version of Sun, the kinematic hardening version suggested in this paper, the Gurson model, and the Mear and Hutchinson model, indicate that the local necking predictions are highly sensitive to the curvature of the yield surface, and the predictions given by the kinematic hardening model are more reasonable for local necking analysis than those by the isotropic hardening model.

This content is only available via PDF.
You do not currently have access to this content.