Extensive experiments were conducted on annealed copper under cyclic nonproportional strain histories. After cyclically stabilizing the material by uniaxial cycling, out-of-phase axial-shear strain cycling for the same effective strain range caused additional increases in stress amplitudes to restabilized levels. Following cyclic stabilization of the material under out-of-phase cycling, a cycle whose effective strain amplitude was comparable to those of previous cycles resulted in stress-strain behavior unique to that cycle and independent of prior stable deformation. The experimental verification of this material property, which has been the subject of much conjecture, allowed the design of a fundamental class of experiments that determined the subsequent yield surface and strain hardening behavior from only one specimen.

This content is only available via PDF.
You do not currently have access to this content.