Abstract

Titanium–6 aluminum–4 vanadium is isothermally forged at 1,023–1,223 K (750°C–950°C) at 0.05, 0.1, and 1.0/s using a 1,500-ton forging press simulator. The temperature increase of a workpiece (100 mm in diameter, 50 mm in height) during forging is measured by inserting thermocouples into the workpiece, and this increase is predicted using finite element analysis (FEA). The physical properties necessary for the FEA are determined using the same material as the forged one in order to improve the prediction accuracy. The true stress–true strain curves and heat transfer coefficient between the workpiece and dies are inversely obtained. The temperature change predicted by FEA using those parameters and curves agreed well with the experimental results. In the FEA, the inelastic heat fraction, which is a conversion factor for plastic deformation energy to heat energy, did not depend on the strain rate, but it remained the same at strain rates of 0.05–1.0/s. This result suggests that the large heat capacity of the workpiece in this study suppressed the effect of heat transfer between the workpiece and dies/air on the temperature of the workpiece. It is also shown that the prediction accuracy of the workpiece’s temperature could be degraded unless the appropriate specific heat value is used, especially near the β transus temperature, which can be affected by the composition of light elements.

References

1.
Prasad
Y. V. R. K.
and
Seshacharyulu
T.
, “
Processing Maps for Hot Working of Titanium Alloys
,”
Materials Science and Engineering: A
243
, nos. 
1–2
(March
1998
):
82
88
. https://doi.org/10.1016/S0921-5093(97)00782-X
2.
Glavicic
M. G.
,
Morton
T.
,
Broderick
T.
,
Venkatesh
V.
,
Zhang
F.
,
Boyce
D.
,
Wu
, et al.
W.
, “
Progress in the Advanced Titanium Microstructure and Modeling Program
,” in
13th World Conference on Titanium
(
Hoboken, NJ
:
John Wiley & Sons
,
2016
),
1863
1873
.
3.
Le
K. C.
,
Tran
T. M.
, and
Langer
J. S.
, “
Thermodynamic Dislocation Theory of High Temperature Deformation in Aluminum and Steel
,”
Physical Review E
96
(July
2017
): 013004. https://doi.org/10.1103/PhysRevE.96.013004
4.
De Hosson
J. T. M.
,
Roos
A.
, and
Metselaar
E. D.
, “
Temperature Rise Due to Fast-Moving Dislocations
,”
Philosophical Magazine A
81
, no. 
5
(
2001
):
1099
1120
. https://doi.org/10.1080/01418610108214431
5.
Semiatin
S. L.
and
Lahoti
G. D.
, “
Deformation and Unstable Flow in Hot Forging of Ti-6Al-2Sn-4Zr-2Mo-0.1S
,”
Metallurgical Transactions A
12
, no. 
10
(October
1981
):
1705
1717
. https://doi.org/10.1007/BF02643753
6.
Yanagida
A.
and
Yanagimoto
J.
, “
Regression Method of Determining Generalized Description of Flow Curve of Steel under Dynamic Recrystallization
,”
ISIJ International
45
, no. 
6
(
2005
):
858
866
. https://doi.org/10.2355/isijinternational.45.858
7.
Laasraoui
A.
and
Jonas
J. J.
, “
Prediction of Steel Flow Stresses at High Temperatures and Strain Rates
,”
Metallurgical Transactions A
22
, no. 
7
(July
1991
):
1545
1558
. https://doi.org/10.1007/BF02667368
8.
Charpentier
P. L.
,
Stone
B. C.
,
Ernst
S. C.
, and
Thomas
J. F.
, “
Characterization and Modeling of the High Temperature Flow Behavior of Aluminum Alloy 2024
,”
Metallurgical Transactions A
17
, no. 
12
(December
1986
):
2227
2237
. https://doi.org/10.1007/BF02645920
9.
Mataya
M. C.
and
Sackschewsky
V. E.
, “
Effect of Internal Heating during Hot Compression on the Stress-Strain Behavior of Alloy 304L
,”
Metallurgical and Materials Transactions A
25
(December
1994
):
2737
2752
. https://doi.org/10.1007/BF02649226
10.
Goetz
R. L.
and
Semiatin
S. L.
, “
The Adiabatic Correction Factor for Deformation Heating during the Uniaxial Compression Test
,”
Journal of Materials Engineering and Performance
10
, no. 
6
(December
2001
):
710
717
. https://doi.org/10.1361/105994901770344593
11.
Jovic
C.
,
Wagner
D.
,
Herve
P.
,
Gary
G.
, and
Lazzarotto
L.
, “
Mechanical Behaviour and Temperature Measurement during Dynamic Deformation on Split Hopkinson Bar of 304L Stainless Steel and 5754 Aluminium Alloy
,”
Journal de Physique IV
134
, no. 
1
(August
2006
):
1279
1285
. https://doi.org/10.1051/jp4:2006134194
12.
Knysh
P.
and
Korkolis
Y. P.
, “
Determination of the Fraction of Plastic Work Converted into Heat in Metals
,”
Mechanics of Materials
86
(July
2015
):
71
80
. https://doi.org/10.1016/j.mechmat.2015.03.006
13.
Rittel
D.
,
Zhang
L. H.
, and
Osovski
S.
, “
The Dependence of the Taylor-Quinney Coefficient on the Dynamic Loading Mode
,”
Journal of the Mechanics and Physics of Solids
107
(October
2017
):
96
114
. https://doi.org/10.1016/j.jmps.2017.06.016
14.
Longère
P.
and
Dragon
A.
, “
Evaluation of the Inelastic Heat Fraction in the Context of Microstructure-Supported Dynamic Plasticity Modelling
,”
International Journal of Impact Engineering
35
, no. 
9
(September
2008
):
992
999
. https://doi.org/10.1016/j.ijimpeng.2007.06.006
15.
Nieto-Fuentes
J. C.
,
Rittel
D.
, and
Osovski
S.
, “
On a Dislocation-Based Constitutive Model and Dynamic Thermomechanical Considerations
,”
International Journal of Plasticity
108
(September
2018
):
55
69
. https://doi.org/10.1016/j.ijplas.2018.04.012
16.
Zubelewicz
A.
, “
Century-Long Taylor-Quinney Interpretation of Plasticity-Induced Heating Reexamined
,”
Scientific Reports
9
, no. 
1
(June
2019
): 9088. https://doi.org/10.1038/s41598-019-45533-0
17.
Li
J. J. Z.
,
Johnson
W. L.
, and
Rhim
W.-K.
, “
Thermal Expansion of Liquid Ti–6Al–4V Measured by Electrostatic Levitation
,”
Applied Physics Letters
89
, no. 
11
(September
2006
): 111913. https://doi.org/10.1063/1.2349840
18.
Boivineau
M.
,
Cagran
C.
,
Doytier
D.
,
Eyraud
V.
,
Nadal
M.-H.
,
Wilthan
B.
, and
Pottlacher
G.
, “
Thermophysical Properties of Solid and Liquid Ti–6Al–4V (TA6V) Alloy
,”
International Journal of Thermophysics
27
, no. 
2
(March
2006
):
507
529
. https://doi.org/10.1007/PL00021868
19.
Boyer
R.
,
Collings
E. W.
, and
Welsch
G.
, eds.,
Materials Properties Handbook: Titanium Alloys
(
Materials Park, OH
:
ASM International
,
1994
).
20.
Ebrahimi
R.
and
Najafizadeh
A.
, “
A New Method for Evaluation of Friction in Bulk Metal Forming
,”
Journal of Materials Processing Technology
152
, no. 
2
(October
2004
):
136
143
. https://doi.org/10.1016/j.jmatprotec.2004.03.029
21.
Li
Y. P.
,
Onodera
E.
,
Matsumoto
H.
,
Koizumi
Y.
,
Yu
S.
, and
Chiba
A.
, “
Development of Novel Methods for Compensation of Stress-Strain Curves
,”
ISIJ International
51
, no. 
5
(
2011
):
782
787
. https://doi.org/10.2355/isijinternational.51.782
22.
Li
Y. P.
,
Onodera
E.
, and
Chiba
A.
, “
Evaluation of Friction Coefficient by Simulation in Bulk Metal Forming Process
,”
Metallurgical and Materials Transactions A
41
, no. 
1
(January
2010
):
224
232
. https://doi.org/10.1007/s11661-009-0066-0
23.
Matsumoto
H.
and
Velay
V.
, “
Mesoscale Modeling of Dynamic Recrystallization Behavior, Grain Size Evolution, Dislocation Density, Processing Map Characteristic, and Room Temperature Strength of Ti–6Al–4V Alloy Forged in the (α+β) Region
,”
Journal of Alloys and Compounds
708
(June
2017
):
404
413
. https://doi.org/10.1016/j.jallcom.2017.02.285
24.
Weiss
I.
and
Semiatin
S. L.
, “
Thermomechanical Processing of Alpha Titanium Alloys—An Overview
,”
Materials Science and Engineering: A
263
, no. 
2
(May
1999
):
243
256
. https://doi.org/10.1016/S0921-5093(98)01155-1
25.
Li
L.
,
Li
M. Q.
, and
Luo
J.
, “
Flow Softening Mechanism of Ti-5Al-2Sn-2Zr-4Mo-4Cr with Different Initial Microstructures at Elevated Temperature Deformation
,”
Materials Science and Engineering: A
628
(March
2015
):
11
20
. https://doi.org/10.1016/j.msea.2015.01.034
26.
Zhang
J.
and
Di
H.
, “
Deformation Heating and Flow Localization in Ti–15–3 Metastable β Titanium Alloy Subjected to High Z Deformation
,”
Materials Science and Engineering: A
676
(October
2016
):
506
509
. https://doi.org/10.1016/j.msea.2016.09.011
27.
Markov
O.
,
Gerasimenko
O.
,
Aliieva
L.
, and
Shapoval
A.
, “
Development of the Metal Rheology Model of High-Temperature Deformation for Modeling by Finite Element Method
,”
EUREKA: Physics and Engineering
2
(March
2019
):
52
60
. https://doi.org/10.21303/2461-4262.2019.00877
28.
Liu
X.
,
Fakir
O. E.
,
Meng
L.
,
Sun
X.
,
Li
X.
, and
Wang
L.
, “
Effects of Lubricant on the IHTC during the Hot Stamping of AA6082 Aluminium Alloy: Experimental and Modelling Studies
,”
Journal of Materials Processing Technology
255
(May
2018
):
175
183
. https://doi.org/10.1016/j.jmatprotec.2017.12.013
29.
Lu
B.
,
Wang
L.
,
Geng
Z.
, and
Huang
Y.
, “
Determination of Interfacial Heat Transfer Coefficient for TC11 Titanium Alloy Hot Forging
,”
Heat and Mass Transfer
53
, no. 
10
(October
2017
):
3049
3058
. https://doi.org/10.1007/s00231-017-2032-5
This content is only available via PDF.
You do not currently have access to this content.