Abstract

Cavitation erosion has to be taken into consideration during material selection in many industrial sectors, e.g., offshore, marine, and oil and gas, in which components operate under severe working conditions. The cavitation erosion equipment, located at the University of Southampton, uses a vibratory apparatus to compare, rank, and characterize the cavitation erosion performance of materials. This article highlights some of the results obtained from industrial research (consultancy) work employing a Hielscher UIP1000hd 20 kHz ultrasonic transducer (Hielscher Ultrasonics GmbH, Teltow, Germany). The transducer is attached to a titanium horn to induce the formation and collapse of cavities in a liquid, creating erosion (material loss) of the specimen undergoing testing. The results from erosion cavitation testing (in accordance with ASTM G32-16, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus (Superseded)) of two commercially available steels are presented herein and are shown to have less resistance to cavitation when compared to polyether(ether ketone), ceramic, and carbide materials. These materials are presented, along with Nickel 200, which was used to normalize the results. A plot of cumulative erosion versus exposure time was determined by periodic interruption of the test.

References

1.
Bourne
,
N. K.
and
Field
,
J. E.
, “
A High-Speed Photographic Study of Cavitation Damage
,”
J. Appl. Phys.
, Vol. 
78
, No. 
7
,
1995
, pp. 
4423
4427
, https://doi.org/10.1063/1.359850
2.
ASTM G32-16
Standard Test Method for Cavitation Erosion Using Vibratory Apparatus
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org
3.
Taillon
,
G.
,
Pougoum
,
F.
,
Lavigne
,
S.
,
Ton-That
,
L.
,
Schulz
,
R.
,
Bousser
,
E.
,
Savoie
,
S.
,
Martinu
,
L.
, and
Klemberg-Sapieha
,
J.-E.
, “
Cavitation Erosion Mechanisms in Stainless Steels and in Composite Metal-Ceramic HVOF Coatings
,”
Wear
, Vols. 
364–365
,
2016
, pp. 
201
210
, https://doi.org/10.1016/j.wear.2016.07.015
4.
Ahmed
,
S. M.
,
Hokkirigawa
,
K.
,
Ito
,
Y.
, and
Oba
,
R.
, “
Scanning Electron Microscopy Observation on the Incubation Period of Vibratory Cavitation Erosion
,”
Wear
, Vol. 
142
, No. 
2
,
1991
, pp. 
303
314
, https://doi.org/10.1016/0043-1648(91)90171-P
5.
Hu
,
H. X.
,
Zheng
,
Y. G.
, and
Qin
,
C. P.
, “
Comparison of Inconel 625 and Inconel 600 in Resistance to Cavitation Erosion and Jet Impingement Erosion
,”
Nucl. Eng. Des.
, Vol. 
240
, No. 
10
,
2010
, pp. 
2721
2730
, https://doi.org/10.1016/j.nucengdes.2010.07.021
6.
Li
,
Z.
,
Han
,
J.
,
Lu
,
J.
, and
Chen
,
J.
, “
Cavitation Erosion Behavior of Hastelloy C-276 Nickel-Based Alloy
,”
J. Alloys Compd.
, Vol. 
619
,
2015
, pp. 
754
759
, https://doi.org/10.1016/j.jallcom.2014.08.248
7.
Basumatary
,
J.
and
Wood
,
R. J. K.
, “
Different Methods of Measuring Synergy between Cavitation Erosion and Corrosion for Nickel Aluminium Bronze in 3.5% NaCl Solution
,”
Tribo. Int
, Vols.
376–377
, Part B,
2017
, pp.
1286
1297
, https://doi.org/10.1016/j.triboint.2017.08.006
8.
Laguna-Camacho
,
J. R.
,
Lewis
,
R.
,
Vite-Torres
,
M.
, and
Méndez-Méndez
,
J. V.
, “
A Study of Cavitation Erosion on Engineering Materials
,”
Wear
, Vol. 
301
, Nos. 
1–2
,
2013
, pp. 
467
476
, https://doi.org/10.1016/j.wear.2012.11.026
9.
Niebuhr
,
D.
, “
Cavitation Erosion Behavior of Ceramics in Aqueous Solutions
,”
Wear
, Vol. 
263
, Nos. 
1–6
,
2007
, pp. 
295
300
, https://doi.org/10.1016/j.wear.2006.12.040
10.
Lu
,
J.
,
Zum Gahr
,
K.-H.
, and
Schneider
,
J.
, “
Microstructural Effects on the Resistance to Cavitation Erosion of ZrO2 Ceramics in Water
,”
Wear
, Vol. 
265
, Nos. 
11–12
,
2008
, pp. 
1680
1686
, https://doi.org/10.1016/j.wear.2008.04.028
11.
Hattori
,
S.
and
Itoh
,
T.
, “
Cavitation Erosion Resistance of Plastics
,”
Wear
, Vol. 
271
, Nos. 
7–8
,
2011
, pp. 
1103
1108
, https://doi.org/10.1016/j.wear.2011.05.012
12.
Yamaguchi
,
A.
,
Wang
,
X.
, and
Kazama
,
T.
, “
Evaluation of Erosion-Resisting Properties of Plastics and Metals Using Cavitating Jet Apparatus
,”
SAE Technical Paper 2002-01-1386
,
SAE International
,
Warrendale, PA
,
2002
, 10p, https://doi.org/10.4271/2002-01-1386
13.
Kikuchi
,
K.
and
Hammitt
,
F. G.
, “
Effect of Separation Distance on Cavitation Erosion of Vibratory and Stationary Specimens in a Vibratory Facility
,”
Wear
, Vol. 
102
, No. 
3
,
1985
, pp. 
211
225
, https://doi.org/10.1016/0043-1648(85)90219-4
14.
Iwai
,
Y.
,
Okada
,
T.
, and
Hammitt
,
F. G.
, “
Effect of Temperature on the Cavitation Erosion of Cast Iron
,”
Wear
, Vol. 
85
, No. 
2
,
1983
, pp. 
181
191
, https://doi.org/10.1016/0043-1648(83)90062-5
15.
Hattori
,
S.
,
Goto
,
Y.
, and
Fukuyama
,
T.
, “
Influence of Temperature on Erosion by a Cavitating Liquid Jet
,”
Wear
, Vol. 
260
, Nos. 
11–12
,
2006
, pp. 
1217
1223
, https://doi.org/10.1016/j.wear.2005.08.001
16.
Li
,
Z.
,
Han
,
J.
,
Lu
,
J.
,
Zhou
,
J.
, and
Chen
,
J.
, “
Vibratory Cavitation Erosion Behavior of AISI 304 Stainless Steel in Water at Elevated Temperatures
,”
Wear
, Vol. 
321
,
2014
, pp. 
33
37
, https://doi.org/10.1016/j.wear.2014.09.012
This content is only available via PDF.
You do not currently have access to this content.