Abstract

The need for improvement of the in-reactor performance of Zr-2.5 % Nb pressure tubes arose because of the higher than expected diametral creep rates and variability in axial elongation observed in some of the pressure tubes of 220 MWe Indian pressurized heavy water reactors (IPHWR220). A systematic study revealed that the pressure tubes used in various IPHWR220 had variations in microstructure, mechanical properties, texture, and chemical composition. The forthcoming PHWR700 is expected to operate at a higher temperature than that of IPHWR220 pressure tubes coupled with ∼3 % partial boiling toward the outlet end. The IPHWR220 pressure tubes were manufactured by NFC (Hyderabad, India) using the combination of extrusion-double pilgering with intermediate annealing and with 20 % final cold work. PHWR700 pressure tubes have been manufactured using a combination of forging-extrusion-single pilgering routes. The fracture behavior of cold-worked and stress-relieved Zr-2.5Nb pressure tube material manufactured employing a forging route for PHWR700 is described in this work as a function of hydrogen content (4 and 60 wppm), temperature (25°C–300°C), and sample location. Fracture toughness tests were carried out as per ASTM E1820-06 [ASTM E1820-06: Standard Test Method for Measurement of Fracture Toughness—Designation, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA] using curved compact tension specimens of 17 mm width. The crack growth was along the axial direction of the tube and was measured using the direct current potential drop (DCPD) technique. The fracture toughness of as-received samples show weak dependency on test temperature, whereas samples having 50 ppm hydrogen show typical S curve behavior and regain toughness above 150°C. The variation in fracture toughness across tube length was within scatter band.

References

1.
Chaedle
,
S. A.
,
Coleman
,
C. E.
, and
Licht
,
H.
, “
CANDU-PHW Pressure Tubes: Their Manufacture, Inspection, and Properties
,”
Nucl. Technol.
, Vol.
57
, No.
3
,
1982
, pp.
425
425
.
2.
Ross-Ross
,
P. A.
, “
Fuel Channel Development for Canada’s Power Reactors
,”
Report No. AECL-3126
,
Atomic Energy of Canada Limited
,
Ontario, Canada
,
1968
(Presented at Annual General Meeting of the Engineering Institute of Canada, May 29–31, Halifax, NS).
3.
Bell
,
L. G.
, “
An Improvement in Creep Resistance of Zr-2.5%Nb Tubes
,”
J. Nucl. Mater.
, Vol.
57
, No.
3
,
1975
, pp.
258
270
. https://doi.org/10.1016/0022-3115(75)90209-3
4.
Ibrahim
,
E. F.
and
Cheadle
,
B. A.
, “
Development of Zirconium Alloys for Pressure Tubes in Candu Reactors
,”
Can. Metall. Quart.
, Vol.
57
, No.
24
,
1985
, pp.
273
281
.
5.
Srivastava
,
D.
,
Dey
,
G. K.
, and
Banerjee
,
S.
, “
Evolution of Microstructure During Fabrication of Zr-2.5 Wt. pct. Nb Alloy Pressure Tubes
,”
Metall. Trans. A.
, Vol.
26A
,
1995
, pp.
2707
2718
. https://doi.org/10.1007/BF02669427
6.
Singh
,
R. N.
,
Kishore
,
R.
,
Sinha
,
T. K.
, and
Banerjee
,
S.
, “
Tensile Properties of Zr-2.5Nb Pressure Tube Alloy Between 25 and 800°C
,”
Report No. 2000/E/029
,
Bhabha Atomic Research Centre (BARC)
,
Mumbai, India
,
2000
.
7.
Causey
,
A. R.
,
Christodoulou
,
N. W.
,
Davies
,
G.
,
Griffiths
,
M.
,
McDougall
,
G. M.
,
Moan
,
G. D.
,
Ploc
,
R. A.
, and
Puls
,
M. P.
, “
Relationship Between Pressure Tube Processing, Impurity/Alloying Element Concentrations and Performance in CANDU Reactors
,”
J. Rare Metal Mater. Eng.
, Vol.
30
, No.
1
,
2001
, pp.
24
34
.
8.
Theaker
,
J. R.
,
Choubey
,
R.
,
Moan
,
G. D.
,
Aldridge
,
S. A.
,
Davis
,
L.
,
Graham
,
R. A.
, and
Coleman
,
C. E.
, “
Fabrication of Zr-2.5Nb Pressure Tubes to Minimize the Harmful Effects of Trace Elements
,”
Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP1245
,
ASTM International
,
West Conshohocken, PA
,
1994
, pp.
221
242
.
9.
Puls
,
M. P.
,
Tapping
,
R. L.
, and
Walker
,
Z. H.
, “
ACR-700 Advances in Materials
,”
Phys. Can.
, Vol.
60
,
2004
, pp.
369
381
.
10.
Srivastava
,
D.
,
Neogi
,
S.
,
Dey
,
G. K.
,
Banerjee
,
S.
,
Ramadasan
,
E.
, and
Anantharaman
,
S.
, “
Microstructural Examination of Zr-2.5Nb Pressure Tube S-07 From Kakrapar Atomic Power Station Unit-2
,”
Report No. BARC/E/2011/007
,
Bhabha Atomic Research Centre (BARC)
,
Mumbai, India
,
2011
.
11.
IAEA
, “
Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: CANDU Pressure Tubes
,”
Report No. TECDOC1037
,
International Atomic Energy Agency
,
Vienna, Austria
,
1998
.
12.
Singh
,
R. N.
,
Mukherjee
,
S.
,
Kishore
,
R.
, and
Kashyap
,
B. P.
, “
Flow Behaviour of a Modified Zr-2.5 wt. % Nb Pressure Tube Alloy
,”
J. Nucl. Mater.
, Vol.
57
, No.
345
,
2005
, pp.
146
161
. https://doi.org/10.1016/j.jnucmat.2005.05.008
13.
Fleck
,
R. G.
,
Price
,
E. G.
, and
Cheadle
,
B. A.
, “
Pressure Tube Development for Candu Reactors
,”
Zr in Nuclear Industry
,
Franklin
D. G.
and
Adanson
R. B.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1984
, pp.
88
105
.
14.
Singh
,
R. N.
,
Kishore
,
R.
,
Sinha
,
T. K.
, and
Kashyap
,
B. P.
, “
Hydride Blister Formation in Zr-2.5 wt. % Nb Pressure Tube Alloy
,”
J. Nucl. Mater.
, Vol.
57
, No.
301
,
2002
, pp.
153
164
. https://doi.org/10.1016/S0022-3115(02)00708-0
15.
Singh
,
R. N.
,
Bind
,
A. K.
,
Srinivasan
,
N. S.
, and
Ståhle
,
P.
, “
Influence of Hydrogen Content on Fracture Toughness of CWSR Zr-2.5Nb Pressure Tube Alloy
,”
J. Nucl. Mater.
, Vol.
57
, No.
432
,
2013
, pp.
87
93
. https://doi.org/10.1016/j.jnucmat.2012.07.046
16.
Wilkowski
,
G. M.
and
Maxey
,
W. A.
, “
Review and Applications of the Electric Potential Method for Measuring Crack Growth in Specimens, Flawed Pipes, and Pressure Vessels
,”
Fracture Mechanics: Fourteenth Symposium, ASTM STP791
, Vol.
II
,
ASTM International
,
West Conshohocken, PA
,
1983
, pp.
266
294
.
17.
Schwalbe
,
K. H.
, “
Test Techniques for Fracture Mechanics Testing
,”
Report No. GKSS 81/E/59, 5th International Conference on Fracture (ICF-5)
,
Cannes, France
, March 29–April 3,
1981
.
18.
Vassilaros
,
M. G.
and
Hackett
,
E. M.
, “
J-Integral R-Curve Testing of High Strength Steels Utilizing the Direct-Current Potential Drop Method
,”
Fracture Mechanics: Fifteenth Symposium, ASTM STP833
,
ASTM International
,
West Conshohocken, PA
,
1984
, pp.
535
552
.
19.
Lowes
,
J. M.
and
Featnehough
,
G. D.
, “
The Detection of Slow Crack Growth in Crack Opening Displacement Specimens Using an Electrical Potential Method
,”
Eng. Fract. Mech.
, Vol.
57
, No.
3
,
1971
, pp.
103
108
. https://doi.org/10.1016/0013-7944(71)90002-6
20.
Singh
,
R. N.
,
Kumar
,
N.
,
Kishore
,
R.
,
Roychaudhury
,
S.
,
Sinha
,
T. K.
, and
Kashyap
,
B. P.
, “
Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube Material
,”
J. Nucl. Mater.
, Vol.
57
, No.
304
,
2002
, pp.
189
203
. https://doi.org/10.1016/S0022-3115(02)00880-2
21.
Chow
,
C. K.
,
Coleman
,
C. E.
,
Hosbons
,
R. R.
,
Davies
,
P. H.
,
Griffiths
,
M.
, and
Choubey
,
R.
, “
Fracture Toughness of Irradiated Zr-2.SNb Pressure Tubes From CANDU Reactors
,”
Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP1132
,
Eucken
C. M.
and
Garde
A. M.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1991
, pp.
246
275
.
22.
Aitchison
,
I.
and
Davies
,
P. H.
, “
Role of Microsegregation in Fracture of Cold-Worked Zr-2.5Nb Pressure Tubes
,”
J. Nucl. Mater.
, Vol.
57
, No.
203
,
1993
, pp.
206
220
. https://doi.org/10.1016/0022-3115(93)90377-B
23.
Chow
,
C. K.
and
Simpson
,
L. A.
, “
Determination of the Fracture Toughness of Irradiated Reactor Pressure Tubes Using Curved Compact Specimens
,”
ASTM STP 945, Fracture Mechanics: Eighteenth Symposium
,
Read
D. T.
and
Reed
R. P.
, Eds.,
West Conshohocken, PA
,
1988
, pp.
419
439
.
24.
Chow
,
C. K.
and
Simpson
,
L. A.
, “
Effect of Fracture Micromechanisms on Crack Growth Resistance Curves of Irradiated Zirconium/2.5 Weight Percent Niobium Alloy
,”
Nonlinear Fracture Mechanics: Volume 11—Elastic-Plastic Fracture, ASTM STP995
,
Landes
J. D
,
Saxena
A.
, and
Merkle
J. G.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1989
, pp.
537
562
.
25.
Johnson
,
H. H.
, “
Calibrating the Electric Potential Method for Studying Slow Crack Growth
,”
Mater. Res. Standards
, Vol.
5
, No.
9
, pp.
442
445
.
26.
ASTM E1820-06
:
Standard Test Method for Measurement of Fracture Toughness—Designation
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
.
27.
Puls
,
M. P.
, “
Effects of Crack Tip Stress States and Hydride-Matrix Interaction Stresses on Delayed Hydride Cracking
,”
Metall. Trans. A
, Vol.
21A
,
1990
, pp.
2905
2917
. https://doi.org/10.1007/BF02647211
28.
Wallace
,
A. C.
,
Shek
,
G. K.
, and
Lepik
,
O. E.
, “
Effects of Hydride Morphology on Zr-2.5Nb Fracture Toughness
,”
Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP1023
,
Van Swam
L. E P.
and
Eucken
C. M.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1989
, pp.
66
88
.
29.
Saibaba
,
N.
,
Vaibhaw
,
K.
,
Neogy
,
S.
,
Mani Krishna
,
K. V.
,
Jha
,
S. K.
,
Phani Babu
,
C.
,
Ramana Rao
,
S. V.
,
Srivastava
,
D.
, and
Dey
,
G. K.
, “
Study of Microstructure, Texture and Mechanical Properties of Zr-2.5Nb Alloy Pressure Tubes Fabricated with Different Processing Routes
,”
J. Nucl. Mater.
, Vol.
57
, No.
440
,
2013
, pp.
319
331
. https://doi.org/10.1016/j.jnucmat.2013.03.069
30.
Bind
,
A. K.
,
Singh
,
R. N.
,
Sunil
,
S.
, and
Khandelwal
,
H. K.
, “
Comparison of J-Parameters of Cold Worked and Stress Relieved Zr-2.5Nb Pressure Tube Alloy Determined Using Load Normalization and Direct Current Potential Drop Technique
,”
Eng. Fract. Mech.
, Vol.
57
, No.
105
,
2013
. pp.
200
210
. https://doi.org/10.1016/j.engfracmech.2013.04.003
31.
Davies
,
P. H.
,
Shewfelt
,
R. S. W.
, and
Jarvzne
,
A. K.
, “
Constraint Effects in Testing Different Curved Geometries of Zr-2.SNb Pressure Tube Material
,”
Constraint Effects in Fracture Theory and Applications: Second Volume, ASTM STP1244
,
Kirk
M.
and
Bakker
A.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1995
, pp.
392
424
.
32.
Davies
,
P. H.
and
Shewfelt
,
R. S. W.
, “
Link Between Results of Small- and Large-Scale Toughness Tests on Irradiated Zr-2.5Nb Pressure Tube Material
,”
Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP1295
,
Bradley
E. R.
and
Sabol
G. P.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1996
, pp.
492
517
.
33.
Singh
,
R. N.
,
Khandelwal
,
H. K.
,
Bind
,
A. K.
,
Sunil
,
S.
, and
Ståhle
,
P.
, “
Influence of Stress Field of Expanding and Contracting Plate Shaped Precipitate on Hydride Embrittlement of Zr-Alloys
,”
Mater. Sci. Eng. A.
, Vol.
57
, No.
579
,
2013
, pp.
157
163
. https://doi.org/10.1016/j.msea.2013.04.117
This content is only available via PDF.
You do not currently have access to this content.