Abstract

ASTM E1820-11, the most widely adopted standard for the determination of fracture toughness parameters, recommends two ductile crack growth correction methods for the evaluation of the J-integral parameter, viz., the basic test (BT) method and the resistance curve test (RC) method. In the present work, a comparison between the fracture toughness parameters obtained using these two methods for heat-treated Zr-2.5Nb alloy at 25°C and 300°C is presented. In order to examine the influence of a material's microstructural condition on the fracture toughness results obtained via these two methods, Zr-2.5Nb alloy was investigated under six solution heat-treated conditions after getting soaked at 850°C, 870°C, or 890°C for either 15 min or 30 min followed by water quenching. The BT method predicted a higher J parameter than the RC method for a given crack length. This deviation in the magnitude of J increased with increasing crack length and was found to be almost twice as much at room temperature as the deviation observed at 300°C. For smaller crack lengths (i.e., up to a/W < 0.54), the J parameters determined using the two methods showed insignificant deviation (<5 %). However, such deviation reached ∼20 %, corresponding to ∼0.63 a/W. Values of fracture toughness parameters such as JQ, Jmax, and dJ/da evaluated using the BT method were found to be higher than those obtained using the RC method. However, deviations in the JQ and Jmax parameters determined by the two methods were insignificant (less than ∼6 %), whereas the deviation in the dJ/da parameter was ∼15 %. The RC method, in contrast to the BT method, provides a marginally conservative estimation of the fracture toughness. The parameter α used in the BT method was observed to control the extent of deviation in the J–R curves derived using these methods.

References

1.
Rice
,
J. R.
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
J. Appl. Mech.
, Vol.
35
, No.
2
,
1968
, pp.
379
386
. https://doi.org/10.1115/1.3601206
2.
Irwin
,
G. R.
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
J. Appl. Mech.
, Vol.
24
,
1957
, pp.
361
364
.
3.
Williams
,
M. L.
, “
On the Stress Distribution at the Base of a Stationary Crack
,”
J. Appl. Mech.
, Vol.
24
,
1957
, pp.
109
114
.
4.
McClintock
,
F. A.
, “
Plasticity Aspect of Fracture
,”
Fracture: An Advanced Treatise
,
Liebowitz
H.
, Ed.,
Academic Press
,
London
,
1971
, pp.
47
225
.
5.
McMeeking
,
R. M.
and
Parks
,
D. M.
, “
On Criteria for J-dominance of Crack-tip Fields in Large-scale Yielding
,”
Elastic–Plastic Fracture, ASTM STP 668
,
Landes
J. D.
,
Begley
J. A.
, and
Clarke
G. A.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1979
, pp.
175
194
.
6.
Rice
,
J. R.
,
McMeeking
,
R. M.
,
Parks
,
D. M.
, and
Sorensen
,
E. P.
, “
Recent Finite Element Studies in Plasticity and Fracture Mechanics
,”
Comput. Methods Appl. Mech. Eng.
, Vol.
17–18
, No.
2
,
1979
, pp.
411
442
. https://doi.org/10.1016/0045-7825(79)90026-4
7.
ASTM E399-12:
Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2012
.
8.
Wallin
,
K.
and
Laukkanen
,
A.
, “
Improved Crack Growth Corrections for J-R Curve Testing
,”
Eng. Fract. Mech.
, Vol.
71
, No.
11
,
2004
, pp.
1601
1614
. https://doi.org/10.1016/S0013-7944(03)00165-6
9.
Garwood
,
S. J.
,
Robinson
,
J. N.
, and
Turner
,
C. E.
, “
The Measurement of Crack Growth Resistance Curves (R-curves) Using the J Integral
,”
Int. J. Fract.
, Vol.
11
,
1975
, pp.
528
530
.
10.
Etemad
,
M. R.
and
Turner
,
C. E.
, “
An Experimental Investigation of Slow Stable Crack Growth Using HY130 Steel
,”
J. Strain Anal.
, Vol.
20
, No.
4
,
1985
, pp.
201
206
. https://doi.org/10.1243/03093247V204201
11.
Ernst
,
H. A.
,
Paris
,
P. C.
, and
Landes
,
J. D.
, “
Estimations on J-integral and Tearing Modulus T from a Single Specimen Test Record
,”
Fracture Mechanics: Thirteenth Conference, ASTM STP 743
, Richard Roberts, Eds.,
ASTM International
,
West Conshohocken, PA
,
1981
, pp.
476
502
.
12.
Joyce
,
J. A.
and
Gudas
,
J. P.
, “
Computer Interactive JIC Testing of Navy Alloys
,”
Elastic–Plastic Fracture, ASTM STP 668
,
Landes
J. D.
,
Begley
J. A.
, and
Clarke
G. A.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1979
, pp.
451
468
.
13.
Neimitz
,
A.
, “
The Jump-like Crack Growth Model, the Estimation of Fracture Energy and JR Curve
,”
Eng. Fract. Mech.
, Vol.
75
, No.
2
,
2008
, pp.
236
252
. https://doi.org/10.1016/j.engfracmech.2007.03.020
14.
Kroon
,
M.
,
Faleskog
,
J.
, and
Oberg
,
H.
, “
A Probabilistic Model for Cleavage Fracture with a Length Scale–Parameter Estimation and Predictions of Growing Crack Experiments
,”
Eng. Fract. Mech.
, Vol.
75
, No.
8
,
2008
, pp.
2398
2417
. https://doi.org/10.1016/j.engfracmech.2007.08.009
15.
Zhu
,
X. K.
and
Joyce
,
J. A.
, “
Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization
,”
Eng. Fract. Mech.
, Vol.
85
,
2012
, pp.
1
46
. https://doi.org/10.1016/j.engfracmech.2012.02.001
16.
ASTM E1820-11:
Standard Test Method for Measurement of Fracture Toughness
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2011
.
17.
Sumpter
,
J. D. G.
and
Turner
,
C. E.
, “
Method for Laboratory Determination of JC (Contour Integral for Fracture Analysis)
,”
Cracks and Fracture, ASTM STP 601
,
Wheeler
J. B.
,
Hoersch
H. M.
,
DeFranco
C. E.
, and
McGlinchey
E. J.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1976
.
18.
Turner
,
C. E.
, “
Fracture Toughness and Specific Energy: A Reanalysis of Results
,”
Mater. Sci. Eng.
, Vol.
11
, No.
5
,
1973
, pp.
275
282
. https://doi.org/10.1016/0025-5416(73)90092-X
19.
Sumpter
,
J. D. G.
, “
JC Determination for Shallow Notch Welded Bend Specimens
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
10
, No.
6
,
1987
, pp.
479
493
. https://doi.org/10.1111/j.1460-2695.1987.tb00498.x
20.
Daunys
,
M.
,
Dundulisa
,
R.
,
Grybenas
,
A.
, and
Krasauskasa
,
P.
, “
Hydrogen Influence on Mechanical and Fracture Mechanics Characteristics of Zirconium Zr–2.5Nb Alloy at Ambient and Elevated Temperatures
,”
Nucl. Eng. Des.
, Vol.
238
, No.
6
,
2008
, pp.
2536
2545
. https://doi.org/10.1016/j.nucengdes.2008.05.018
21.
Davies
,
P. H.
and
Sterns
,
C. P.
, “
Fracture Toughness Testing of Zircaloy Pressure Tube Material with Radial Hydrides Using Direct-current Potential Drop
,”
Fracture Mechanics: Seventeenth Volume, ASTM STP 905
,
Underwood
J. H.
,
Chait
R.
,
Smith
C. W.
,
Wilhem
D. P.
,
Andrews
, and
W. A.
Newman
J. C.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1986
, pp.
379
400
.
22.
Huang
,
F. H.
, “
Fracture Toughness Evaluation for Zircaloy-2 Pressure Tubes with the Electric-potential Method
,”
ASTM International Symposium on Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension
, New Orleans, LA, Jan. 29–31,
1992
,
ASTM International
,
West Conshohocken, PA
, pp.
182
198
.
23.
Simpson
,
L. A.
and
Chow
,
C. K.
, “
Effect of Metallurgical Variable and Temperature on the Fracture Toughness of Zirconium Alloys Pressure Tubes
,”
Zirconium in the Nuclear Industry, ASTM STP 939
,
Adamson
and
R. B.
Van Swam
L. F. P.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1987
, pp.
579
596
.
24.
Singh
,
R. N.
,
Bind
,
A. K.
,
Srinivasan
,
N. S.
, and
Ståhle
,
P.
, “
Influence of Hydrogen Content on Fracture Toughness of CWSR Zr-2.5Nb Pressure Tube Alloy
,”
J. Nucl. Mater.
, Vol.
432
, No.
1–3
,
2013
, pp.
87
93
. https://doi.org/10.1016/j.jnucmat.2012.07.046
25.
Asada
,
T.
,
Kimoto
,
H.
,
Chiba
,
N.
, and
Kasai
,
Y.
, “
Fracture Toughness Evaluation of Heat-Treated Zr-2.5Nb Pressure Tubes
,”
Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132
,
Eucken
and
C. M.
Garde
A. M.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1991
, pp.
99
118
.
26.
Chow
,
C. K.
,
Coleman
,
C. E.
,
Hosbons
,
R. R.
,
Davies
,
P. H.
,
Griffiths
,
M.
, and
Chouby
,
R.
, “
Fracture Toughness of Irradiated Zr-2.5Nb Pressure Tubes from CANDU Reactors
,”
Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132
,
Eucken
and
C. M.
Garde
A. M.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1991
, pp.
246
275
.
27.
Hosbons
,
R. R.
,
Davies
,
P. H.
,
Griffiths
,
M.
,
Sagat
,
S.
, and
Coleman
,
C. E.
, “
Effect of Long-term Irradiation on the Fracture Properties of Zr-2.5Nb Pressure Tubes
,”
Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354
,
Sabol
and
G. P.
Moan
G. D.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2000
, pp.
122
138
.
28.
Bind
,
A. K.
,
Singh
,
R. N.
,
Sunil
,
S.
, and
Khandelwal
,
H. K.
, “
Comparison of J-parameters of Cold Worked and Stress Relieved Zr-2.5Nb Pressure Tube Alloy Determined Using Load Normalization and Direct Current Potential Drop Technique
,”
Eng. Fract. Mech.
, Vol.
105
,
2013
, pp.
200
210
. https://doi.org/10.1016/j.engfracmech.2013.04.003
29.
Coleman
,
C. E.
,
Theaker
,
J. R.
, and
Kidd
,
K. V.
, “
Effect of Fabrication Variables on Irradiation Response of Crack Growth Resistance of Zr-2.5Nb
,”
J. ASTM Int.
, Vol.
1
, No.
7
,
2004
, pp.
783
801
. https://doi.org/10.1520/JAI12437
30.
Kim
,
Y. S.
,
Matvienko
,
Y. G.
, and
Jeong
,
H. C.
, “
Development of Experimental Procedure Based on the Load Separation Method to Measure the Fracture Toughness of Zr-2.5Nb Tubes
,”
Key Eng. Mater.
, Vol.
345–346
,
2007
, pp.
449
452
.
31.
Joyce
,
J. A.
, “
Analysis of the E08.02 High Rate Round Robin
,”
J. Test. Eval.
, Vol.
29
, No.
4
,
2001
, pp.
329
351
. https://doi.org/10.1520/JTE12262J
32.
Herrera
,
R.
and
Landes
,
J. D.
, “
Direct J-R Curve Analysis: A Guide to the Methodology
,”
Fracture Mechanics: Twenty-First Symposium, ASTM STP 1074
,
Gudas
J. P.
,
Joyce
, and
J. A.
Hackett
E. M.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1990
, pp.
24
43
.
33.
Landes
,
J. D.
,
Zhou
,
Z.
,
Lee
,
K.
, and
Herrera
,
R.
, “
Normalization Method for Developing J-R Curves with the LMN Function
,”
J. Test. Eval.
, Vol.
19
, No.
4
,
1991
, pp.
305
311
. https://doi.org/10.1520/JTE12574J
34.
Lee
,
K.
,
1995
, “
Elastic-Plastic Fracture Toughness Determination under Some Difficult Conditions
,” Ph.D. dissertation,
The University of Tennessee
, Knoxville, TN.
35.
Nevalainen
,
M.
and
Dodds
,
R. H.
, “
Numerical Investigation of 3-D Constraint Effect on Brittle Fracture in SE(B) and C(T) Specimens
,”
Int. J. Fract.
, Vol.
74
, No.
2
,
1995
, pp.
131
161
. https://doi.org/10.1007/BF00036262
36.
Saxena
,
A.
and
Hudak
,
S. J.
, “
Review and Extension of Compliance Information for Common Crack Growth Specimens
,”
Int. J. Fract.
, Vol.
14
, No.
5
,
1978
, p. 453. https://doi.org/10.1007/BF01390468
37.
Coleman
,
C. E.
,
Cheadle
,
B. A.
,
Cann
,
C. D.
, and
Theaker
,
J. R.
, “
Development of Pressure Tubes with Service Life Greater than 30 Years
,”
Zr in the Nuclear Industry: 11th International Symposium, ASTM STP 1295
,
Bradley
and
E. R.
Sabol
G. P.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1996
, p. 884.
38.
Singh
,
R. N.
,
Bind
,
A. K.
,
Singh
,
J. B.
,
Chakravartty
,
J. K.
,
Thomas Paul
,
V.
,
Madhusoodnan
,
K.
,
Satyam Suwas Saroja
,
S.
,
Suri
,
A. K.
, and
Banerjee
,
S.
, “
Development and Characterization of Microstructure and Mechanical Properties of Heat-treated Zr–2.5Nb Alloy for AHWR Pressure Tubes
,”
Mater. Performance Characterization
, Vol.
2
, No.
1
,
2013
, pp.
120
133
.
39.
Fleck
,
R. G.
,
Price
,
E. G.
, and
Cheadle
,
B. A.
, “
Pressure Tube Development for CANDU Reactors
,”
Zr in the Nuclear Industry, ASTM STP 824
,
Franklin
and
D. G.
Adamson
R. B.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1984
, p. 88.
40.
Theaker
,
J. R.
,
Choubey
,
R.
,
Moan
,
G. D.
,
Aldridge
,
S. A.
,
Davis
,
L.
,
Graham
,
R. A.
, and
Coleman
,
C. E.
, “
Fabrication of Zr-2.5Nb Pressure Tubes to Minimize the Harmful Effects of Trace Elements
,”
Zr in the Nuclear Industry: 11th International Symposium, ASTM STP 1295
,
Bradley
and
E. R.
Sabol
G. P.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1996
, p. 221.
41.
Khandelwal
,
H. K.
,
Singh
,
R. N.
,
Bind
,
A. K.
,
Sunil Saurav Rath
,
B. N.
,
Singh
,
J. B.
,
Kumar
,
S.
, and
Chakravartty
,
J. K.
, “
Influence of Soaking Temperature and Time on Microstructure and Mechanical Properties of Water Quenched Zr-2.5Nb Alloy
,”
Mater. Performance Characterization
(unpublished).
42.
Joyce
,
J. A.
,
Davis
,
D. A.
,
Hackett
,
E. M.
, and
Hays
, R. A., “
Application of the J-integral and Modified J-integral to Cases of Large Crack Extension
,”
Fracture Mechanics: Twenty-First Symposium, ASTM STP 1074
,
Gudas
J. P.
,
Joyce
J. A.
, and
Hackett
E. M.
, Eds.,
1988
, pp.
85
105
.
43.
Joyce
,
J. A.
and
Hackett
,
E. M.
, “
Development of an Engineering Definition of the Extent of J Singularity Controlled Crack Growth
,”
Defect Assessment of Components-Fundamentals and Applications
, ESIS/EGF9,
Blauel
J. G.
, and
Schwalbe
K. H.
, Eds.,
Mechanical Engineering Publications
,
London
,
1991
, pp.
233
249
.
44.
Landes
,
J. D.
, “
Evaluation of the ASTM J Initiation Procedure Using the EURO Fracture Toughness Data Set
,”
J. Test. Eval.
, Vol.
34
, No.
3
,
2006
, pp.
200
210
.
45.
Wallin
,
K.
, “
Specimen Size Limitation in J–R Curve Testing—Standards versus Reality
,”
J. ASTM Int.
, Vol.
4
, No.
9
,
2007
, pp.
1
12
. https://doi.org/10.1520/JAI100978
This content is only available via PDF.
You do not currently have access to this content.