Abstract

Wafer quality control is one of the important processes to improve the yield rate of semiconductor products. Profile quality and defects in the wafer are two key factors that should be taken into consideration. In this research, we introduce a method that measures the profile of the upper surface and the thickness of the wafer at the same time using an optical fiber cascaded Fabry-Pérot interferometer working at wavelength of 1550 nm. Therefore, the 3D profile of the wafer can be reconstructed directly. Testing results show that both accuracy and precision of the Fabry-Pérot interferometer are within a nanometer scale. Defects, especially those embedded inside the wafer, will be detected by monitoring the leaky field with treating wafers as slab waveguides. With the leaky field detection, defects on the lower surface of the wafer were successfully detected by monitoring the leaky field above the upper surface of the wafer. Compared with traditional methods such as radiographic testing (RT) or computed tomography (CT) testing, the proposed methods provide a cost-effective alternative for wafer quality evaluation.

This content is only available via PDF.
You do not currently have access to this content.