Abstract

This study proposes a comprehensive experiment-based method to determine stress field and slip lines in metal cutting process. The chip geometry and workpiece's strain and strain rate fields are determined using an in-situ imaging technique. The two-dimensional (2D) heat transfer problem for the steady-state cutting process is solved to derive the cutting temperature, and the flow stresses of work material in the main deformation zone are calculated based on the plasticity theory. Furthermore, the stress field is comprehensively determined to satisfy the stress equilibrium, friction law along the tool-chip interface, and traction-free boundary condition along the uncut chip surface. In addition, slip lines in the main deformation zone are derived according to the direction of maximum shear stress without the assumption of perfect rigid-plastic material. The proposed method is validated by comparing the cutting forces calculated based on the obtained stress field with the experimentally measurements.

This content is only available via PDF.
You do not currently have access to this content.