Abstract

The growing flexibility of modern production systems complicates the quality assurance and process safety of mechanical processing. As an import component of milling machines, the workpiece clamping systems plays a quality-determining role within every milling process. Thus, a sensory workpiece clamping system which utilizes sensory swing clamps was developed in former research work in order to provide monitoring capabilities. This contribution deals with the experimental analysis of the multiple integrated sensors of the sensory swing clamp and the characterization of their measuring capability towards different measurands. By means of the stepwise linear regression method, different models were developed that enable the determination of the clamping force, hydraulic pressure and the piston position. The results verify that the multi-sensor evaluation significantly increases the measuring accuracy of a sensory swing clamp. Thus, the measuring accuracy is measurable with a standard deviation of 0.05 MPa for the hydraulic pressure, 101 N for the clamping force and 0.62 mm for the piston position. Furthermore, the practicability and flexible use at varying boundary conditions is proved.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.