This paper presents potential approaches that increase the energy efficiency of an in-line induction heating system for forging of an automotive crankshaft. Both heat loss reduction and optimization of process parameters are proposed scientifically in order to minimize the energy consumption and the temperature deviation in the workpiece. We applied the numerical multiobjective optimization method in conjunction with the design of experiment (DOE), mathematical approximation with metamodel, nondominated sorting genetic algorithm (GA), and engineering data mining. The results show that using the insulating covers reduces heat by an amount equivalent to 9% of the energy stored in the heated workpiece, and approximately 5.8% of the energy can be saved by process parameter optimization.

References

References
1.
Kang
,
Y.-C.
,
Chun
,
D.-M.
,
Jun
,
Y.
, and
Ahn
,
S.-H.
,
2010
, “
Computer-Aided Environmental Design System for the Energy-Using Product (EUP) Directive
,”
Int. J. Precis. Eng. Manuf.
,
11
(
3
), pp.
397
406
.10.1007/s12541-010-0046-8
2.
Rao
,
P. P.
, and
Gopinath
,
A.
,
2013
, “
Energy Savings in Automotive Paint Ovens: A New Concept of Shroud on the Carriers
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
045001
.10.1115/1.4024537
3.
Park
,
C.-W.
,
Kwon
,
K.-S.
,
Kim
,
W.-B.
,
Min
,
B.-K.
,
Park
,
S.-J.
,
Sung
,
I.-H.
,
Yoon
,
Y.
,
Lee
,
K.-S.
,
Lee
,
J.-H.
, and
Seok
,
J.
,
2009
, “
Energy Consumption Reduction Technology in Manufacturing—A Selective Review of Policies, Standards, and Research
,”
Int. J. Precis. Eng. Manuf.
,
10
(
5
), pp.
151
173
.10.1007/s12541-009-0107-z
4.
Herrmann
,
C.
,
Thiede
,
S.
,
Kara
,
S.
, and
Hesselbach
,
J.
,
2011
, “
Energy Oriented Simulation of Manufacturing Systems—Concept and Application
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
45
48
.10.1016/j.cirp.2011.03.127
5.
Ma
,
J.
,
Ge
,
X.
, and
Lei
,
S.
,
2013
, “
Energy Efficiency in Thermally Assisted Machining of Titanium Alloy: A Numerical Study
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061001
.10.1115/1.4025610
6.
Wrona
,
E.
, and
Nacke
,
B.
,
2001
, “
Rational Use of Energy in Induction Heaters for Forging Industry
,”
International Scientific Colloquium, Modeling for Saving Resources
, Riga, pp.
153
157
.
7.
Levacher
,
L.
,
Hita
,
I.
,
Bethenod
,
C.
, and
Hartmann
,
S.
,
2009
, “
Energy Efficiency in Industry: From Existing Technologies to Innovative Solutions
,”
ECEE 2009 Summer Study, La Colle sur Loup
, France, pp.
1091
1100
.
8.
Park
,
H.-S.
, and
Dang
,
X.-P.
,
2013
, “
Reduction of Heat Losses for the In-Line Induction Heating System by Optimization of Thermal Insulation
,”
Int. J. Precis. Eng. Manuf.
,
14
(
6
), pp.
903
909
.10.1007/s12541-013-0119-6
9.
Bay
,
F.
,
Labbe
,
V.
,
Favennec
,
Y.
, and
Chenot
,
J. L.
,
2003
, “
A Numerical Model for Induction Heating Processes Coupling Electromagnetism and Thermomechanics
,”
Int. J. Numer. Methods Eng.
,
58
(
6
), pp.
839
867
.10.1002/nme.796
10.
Novac
,
M.
,
Novac
,
O.
,
Vladu
,
E.
,
Indrie
,
L.
, and
Grava
,
A.
,
2013
, “
Numerical Analysis of Electromagnetic Field Coupled With the Thermal Field in Induction Heating Process
,”
Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering
,
Springer
,
New York
.10.1007/978-1-4614-3558-7_98
11.
Favennec
,
Y.
,
Labbé
,
V.
, and
Bay
,
F.
,
2003
, “
Induction Heating Processes Optimization a General Optimal Control Approach
,”
J. Comput. Phys.
,
187
(
1
), pp.
68
94
.10.1016/S0021-9991(03)00081-0
12.
Rudnev
,
V. I.
,
Loveless
,
D.
,
Schweigert
,
K.
,
Dickson
,
P.
, and
Rugg
,
M.
,
2000
, “
Efficiency and Temperature Considerations in Induction Re-Heating of Bar, Rod and Slab
,”
Ind. Heat.
,
67
, pp.
39
43
.
13.
Bodart
,
O.
,
Boureau
,
A.-V.
, and
Touzani
,
R.
,
2001
, “
Numerical Investigation of Optimal Control of Induction Heating Processes
,”
Appl. Math. Modell.
,
25
(
8
), pp.
697
712
.10.1016/S0307-904X(01)00007-5
14.
Galunin
,
S.
,
Zlobina
,
M.
,
Nikanorov
,
A.
, and
Blinov
,
Y.
,
2005
, “
Numerical Optimization of Induction Through Heating for Forging
,”
9th Russian-Korean International Symposium on Science and Technology
, pp.
313
314
.
15.
Zgraja
,
J.
,
2005
, “
The Optimisation of Induction Heating System Based on Multiquadric Function Approximation
,”
Int. J. Comput. Math. Electr. Electron. Eng.
,
24
(
1
), pp.
305
313
.10.1108/03321640510571327
16.
Rapoport
,
E.
, and
Pleshivtseva
,
Y.
,
2006
,
Optimal Control of Induction Heating Processes
,
CRC Press
, Boca Raton, FL.
17.
Pleshivtseva
,
Y.
,
Rapoport
,
E.
,
Efimov
,
A.
,
Nacke
,
B.
, and
Nikanorov
,
A.
,
2008
, “
Special Method of Parametric Optimization of Induction Heating Systems
,”
International Scientific Colloquium, Modelling for Electromagnetic Processing
, Hannover, Germany, pp.
229
234
.
18.
Rudnev
,
V.
,
Brown
,
D.
,
Tyne
,
C. J. V.
, and
Clarke
,
K. D.
,
2008
, “
Intricacies for the Successful Induction Heating of Steels in Modern Forge Shops
,” 19th International Forging Congress, Chicago, IL, pp.
71
82
.
19.
Rudnev
,
V.
,
2013
, “
Unique Computer Modeling Approaches for Simulation of Induction Heating and Heat-Treating Processes
,”
J. Mater. Eng. Perform.
,
22
(
7
), pp.
1899
1906
.10.1007/s11665-013-0564-5
20.
Nemkov
,
V.
,
2009
,
Handbook of Thermal Process Modeling of Steels
,
CRC Press
, Boca Raton, FL.
21.
Galunin
,
S.
,
Zlobina
,
M.
,
Blinov
,
Y.
,
Nikanorov
,
A.
,
Zedler
,
T.
, and
Nacke
,
B.
,
2006
, “
Electrothermal Modeling and Numerical Optimization of Induction System for Disk Heating
,” International Scientific Colloquium Modeling for Material Processing, Riga, pp.
179
184
.
22.
Fireteanu
,
V.
,
Popa
,
M.
,
Tudorache
,
T.
,
Levacher
,
L.
,
Paya
,
B.
, and
Neau
,
Y.
,
2007
, “
Maximum of Energetic Efficiency in Inductions Through-Heating Process
,” HES-07, Padova, Italy, pp.
325
332
.
23.
Paya
,
B.
,
Nacke
,
B.
,
Lupi
,
S.
,
Maréchal
,
F.
,
Fautrelle
,
Y.
, and
Levacher
,
L.
,
2009
, “
Issues for Energy Saving Solutions for Industry Using Innovative Induction Heating
,” 5th European Conference Economics and Management of Energy in Industry, Vilamoura Algrave, Portugal, pp.
1
14
.
24.
Walther
,
A.
,
2008
, “
Induction Billet Heaters With Enthalpy Controlled Zone Heating
,”
International Scientific Colloquium, Modelling for Electromagnetic Processing
, Hannover, pp.
235
241
.
25.
Rudnev
,
V.
,
2011
, “
Intricacies of Computer Simulation of Induction Heating Processes
,” 28th Forging Industry Technical Conference, Schaumburg, IL, pp.
1
10
.
26.
Novac
,
M.
,
2008
, “
Numerical Modeling of Induction Heating Process Using Inductors With Circular Shape Turns
,”
J. Electr. Electron. Eng.
,
1
(
1
), pp.
107
110
.
27.
Xun
,
W.
,
Jie
,
Z.
, and
Qiang
,
L.
,
2014
, “
Multi-Objective Optimization of Medium Frequency Induction Heating Process for Large Diameter Pipe Bending
,”
Procedia Eng.
,
81
(
0
), pp.
2255
2260
.10.1016/j.proeng.2014.10.317
28.
Asadi
,
M.
, and
Goldak
,
J. A.
,
2013
, “
An Integrated Computational Welding Mechanics With Direct-Search Optimization for Mitigation of Distortion in an Aluminum Bar Using Side Heating
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011007
.10.1115/1.4025406
29.
Caiazzo
,
F.
,
Alfieri
,
V.
,
Corrado
,
G.
,
Cardaropoli
,
F.
, and
Sergi
,
V.
,
2013
, “
Investigation and Optimization of Laser Welding of Ti-6Al-4 V Titanium Alloy Plates
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061012
.10.1115/1.4025578
30.
Hussain
,
M. F.
,
Barton
,
R. R.
, and
Joshi
,
S. B.
,
2002
, “
Metamodeling: Radial Basis Functions, Versus Polynomials
,”
Eur. J. Oper. Res.
,
138
(
1
), pp.
142
154
.10.1016/S0377-2217(01)00076-5
31.
Mullur
,
A.
, and
Messac
,
A.
,
2006
, “
Metamodeling Using Extended Radial Basis Functions: A Comparative Approach
,”
Eng. Comput.
,
21
(
3
), pp.
203
217
.10.1007/s00366-005-0005-7
32.
Park
,
H.-S.
, and
Dang
,
X.-P.
,
2010
, “
Structural Optimization Based on CAD–CAE Integration and Metamodeling Techniques
,”
Comput.-Aided Des.
,
42
(
10
), pp.
889
902
.10.1016/j.cad.2010.06.003
33.
Sadeghipour
,
K.
,
Dopkin
,
J. A.
, and
Li
,
K.
,
1996
, “
A Computer Aided Finite Element/Experimental Analysis of Induction Heating Process of Steel
,”
Comput. Ind.
,
28
(
3
), pp.
195
205
.10.1016/0166-3615(95)00072-0
34.
Rudnev
,
V. I.
,
Loveless
,
D.
,
Cook
,
R.
, and
Black
,
M.
,
2002
,
Handbook of Induction Heating
Marcel Dekker, New York
.
35.
Demidovich
,
V. B.
, and
Rastvorova
,
I. I.
,
2014
, “
A Combined Method of Simulation of an Electric Circuit and Field Problems in the Theory of Induction Heating
,”
Russ. Electr. Eng.
,
85
(
8
), pp.
536
540
.10.3103/S1068371214080057
36.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: Nsga-Ii
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
37.
Gossard
,
D.
,
Lartigue
,
B.
, and
Thellier
,
F.
,
2013
, “
Multi-Objective Optimization of a Building Envelope for Thermal Performance Using Genetic Algorithms and Artificial Neural Network
,”
Energy Build.
,
67
(
0
), pp.
253
260
.10.1016/j.enbuild.2013.08.026
38.
Kuriakose
,
S.
, and
Shunmugam
,
M. S.
,
2005
, “
Multi-Objective Optimization of Wire-Electro Discharge Machining Process by Non-Dominated Sorting Genetic Algorithm
,”
J. Mater. Process. Technol.
,
170
(
1–2
), pp.
133
141
.10.1016/j.jmatprotec.2005.04.105
39.
Srinivas
,
N.
, and
Deb
,
K.
,
1994
, “
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
,”
Evol. Comput.
,
2
(
3
), pp.
221
248
.10.1162/evco.1994.2.3.221
You do not currently have access to this content.