The biocompatibility of nickel titanium (NiTi) wires joined to stainless steel (SS) wires via laser autogenous brazing has been evaluated. The laser joining process is designed to limit the amount of mixing of the materials, thus preventing the formation of brittle intermetallic phases. This process has the potential for manufacturing implantable medical devices; therefore, the biocompatibility must be determined. Laser joined samples underwent nickel release rate, polarization, hemolysis, and cytotoxicity testing. Competing effects regarding grain refinement and galvanic effects were found to influence the corrosion response. After 15 days of exposure to a simulated body fluid, the total nickel released is less than 2 ug/cm2. Numerical modeling of the corrosion currents along the wires, by making use of polarization data, helped to explain these results. Microbiological testing found a maximum hemolytic index of 1.8, while cytotoxicity tests found a zero toxicity grade. All of these results indicate that the autogenous laser brazing process results in joints with good biocompatibility.

References

References
1.
Duerig
,
T.
,
Pelton
,
A.
, and
Stöckel
,
D.
,
1999
, “
An Overview of Nitinol Medical Applications
,”
Mater. Sci. Eng. A
,
A273
(
275
), pp.
149
160
.10.1016/S0921-5093(99)00294-4
2.
Dos Santos
,
R. L.
,
Pithon
,
M. M.
,
Nascimento
,
L. E. A. G.
,
Martins
,
F. O.
,
Teresa
,
M.
,
Romanos
,
V.
, and
Nojima
,
L. I.
,
2011
, “
Cytotoxicity of Electric Spot Welding: An In Vitro Study
,”
Dent. Press J. Orthod.
,
16
(
3
), pp.
1
6
, Available at http://dpjo.dentalpresspub.com/editions/v16n3/
3.
Vannod
,
J.
,
2011
,
Laser Welding of Nickel-Titanium and Stainless Steel Wires: Processing, Metallurgy and Properties
, Ph.D. thesis,
Ecole Polytechnique Federale De Lausanne
, Lausanne, Switzerland.
4.
Cui
,
Z. D.
,
Man
,
H. C.
, and
Yang
,
X. J.
,
2005
, “
The Corrosion and Nickel Release Behavior of Laser Surface-Melted NiTi Shape Memory Alloy in Hanks' Solution
,”
Surf. Coat. Technol.
,
192
(
2–3
), pp.
347
353
.10.1016/j.surfcoat.2004.06.033
5.
Surmenev
,
R. A.
,
Ryabtseva
,
M. A.
,
Shesterikov
,
E. V.
,
Pichugin
,
V. F.
,
Peitsch
,
T.
, and
Epple
,
M.
,
2010
, “
The Release of Nickel From Nickel-Titanium (NiTi) is Strongly Reduced by a Sub-Micrometer Thin Layer of Calcium Phosphate Deposited by RF-Magnetron Sputtering
,”
J. Mater. Sci. Mater. Med.
,
21
(
4
), pp.
1233
1239
.10.1007/s10856-010-3989-5
6.
Hang
,
R.
,
Ma
,
S.
,
Ji
,
V.
, and
Chu
,
P. K.
,
2010
, “
Corrosion Behavior of NiTi Alloy in Fetal Bovine Serum
,”
Electrochim. Acta
,
55
(
20
), pp.
5551
5560
.10.1016/j.electacta.2010.04.061
7.
Zhang
,
C.
,
Sun
,
X.
,
Zhao
,
S.
,
Yu
,
W.
, and
Sun
,
D.
,
2014
, “
Susceptibility to Corrosion and In Vitro Biocompatibility of a Laser-Welded Composite Orthodontic Arch Wire
,”
Ann. Biomed. Eng.
,
42
(
1
), pp.
222
230
.10.1007/s10439-013-0885-4
8.
Li
,
H. M.
,
Sun
,
D. Q.
,
Cai
,
X. L.
,
Dong
,
P.
, and
Wang
,
W. Q.
,
2012
, “
Laser Welding of TiNi Shape Memory Alloy and Stainless Steel Using Ni Interlayer
,”
Mater. Des.
,
39
, pp.
285
293
.10.1016/j.matdes.2012.02.031
9.
Brandal
,
G.
,
Satoh
,
G.
,
Yao
,
Y. L.
, and
Naveed
,
S.
,
2013
, “
Beneficial Interface Geometry for Laser Joining of NiTi to Stainless Steel Wires
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061006
.10.1115/1.4025495
10.
Satoh
,
G.
, and
Yao
,
Y. L.
,
2011
, “
Laser Autogenous Brazing—A New Method for Joining Dissimilar Metals
,”
Proceedings of the 30th International Congress on the Applications of Lasers and Elecro-Optics
, Lake Buena Vista, FL, pp.
315
324
.
11.
Cacciamani
,
G.
,
De Keyzer
,
J.
,
Ferro
,
R.
,
Klotz
,
U. E.
,
Lacaze
,
J.
, and
Wollants
,
P.
,
2006
, “
Critical Evaluation of the Fe–Ni, Fe–Ti and Fe–Ni–Ti Alloy Systems
,”
Intermetallics
,
14
(
10–11
), pp.
1312
1325
.10.1016/j.intermet.2005.11.028
12.
Li
,
X.
,
Wang
,
J.
,
Han
,
E.
, and
Ke
,
W.
,
2007
, “
Influence of Fluoride and Chloride on Corrosion Behavior of NiTi Orthodontic Wires
,”
Acta Biomater.
,
3
(
5
), pp.
807
815
.10.1016/j.actbio.2007.02.002
13.
Wang
,
J.
,
Li
,
N.
,
Han
,
E.
, and
Ke
,
W.
,
2006
, “
Effect of pH, Temperature and Cl- Concentration on Electrochemical Behavior of NiTi Shape Memory Alloy in Artificial Saliva
,”
J. Mater. Sci. Mater. Med.
,
17
(
10
), pp.
885
890
.10.1007/s10856-006-0178-7
14.
Petro
,
R.
, and
Schlesinger
,
M.
,
2013
,
Applications of Electrochemistry in Medicine
,
Springer
,
Boston, MA
.
15.
Expert Group on Vitamins and Minerals, 2003, “Safe Upper Levels for Vitamins and Minerals,” Committee on Toxicity, Food Standards Agency, Report.
16.
Armitage
,
D. A.
,
Parker
,
T. L.
, and
Grant
,
D. M.
,
2003
, “
Biocompatibility and Hemocompatibility of Surface-Modified NiTi Alloys
,”
J. Biomed. Mater. Res. A
,
66
(
1
), pp.
129
137
.10.1002/jbm.a.10549
17.
Wataha
,
J. C.
,
Lockwood
,
P. E.
,
Marek
,
M.
, and
Ghazi
,
M.
,
1999
, “
Ability of Ni-Containing Biomedical Alloys to Activate Monocytes and Endothelial Cells in Vitro
,”
J. Biomed. Mater. Res.
,
45
(
3
), pp.
251
257
.10.1002/(SICI)1097-4636(19990605)45:3<251::AID-JBM13>3.0.CO;2-5
18.
Fehlner
,
F.
, and
Graham
,
M.
,
2002
, “
Thin Oxide Film Formation on Metals
,”
Corrosion Mechanisms in Theory and Practice
,
P.
Marcus
, ed.,
Marcel Dekker
,
New York
, pp.
171
187
.
19.
Michiardi
,
A.
,
Aparicio
,
C.
,
Planell
,
J. A.
, and
Gil
,
F. J.
,
2006
, “
New Oxidation Treatment of NiTi Shape Memory Alloys to Obtain Ni-Free Surfaces and to Improve Biocompatibility
,”
J. Biomed. Mater. Res. B
,
77
(
2
), pp.
249
256
.10.1002/jbm.b.30441
20.
Tan
,
L.
,
2003
, “
Corrosion and Wear-Corrosion Behavior of NiTi Modified by Plasma Source Ion Implantation
,”
Biomaterials
,
24
(
22
), pp.
3931
3939
.10.1016/S0142-9612(03)00271-0
21.
Trépanier
,
C.
,
Tabrizian
,
M.
,
Yahia
,
L. H.
,
Bilodeau
,
L.
, and
Piron
,
D. L.
,
1998
, “
Effect of Modification of Oxide Layer on NiTi Stent Corrosion Resistance
,”
J. Biomed. Mater. Res.
,
43
(
4
), pp.
433
440
.10.1002/(SICI)1097-4636(199824)43:4<433::AID-JBM11>3.0.CO;2-#
22.
Sohmura
,
T.
,
1988
, “
Improvement in Corrosion Resistance in Ti–Ni Shape Memory Alloy for Implant by Oxide Film Coating
,”
Proceedings of the World Biomaterial Congress
, Kyoto, Japan, p.
574
.
23.
Undisz
,
A.
,
Schrempel
,
F.
,
Wesch
,
W.
, and
Rettenmayr
,
M.
,
2012
, “
Mechanism of Oxide Layer Growth During Annealing of NiTi
,”
J. Biomed. Mater. Res. A
,
100
(
7
), pp.
1743
1750
.10.1002/jbm.a.34133
24.
Villermaux
,
F.
,
Tabrizian
,
M.
,
Yahia
,
L.
,
Meunier
,
M.
, and
Piron
,
D. L.
,
1997
, “
Excimer Laser Treatment of NiTi Shape Memory Alloy Biomaterials
,”
Appl. Surf. Sci.
,
109-110
, pp.
62
66
.10.1016/S0169-4332(96)00619-8
25.
Nishida
,
M.
,
Wayman
,
C. M.
, and
Honma
,
T.
,
1986
, “
Precipitation Processes in Near-Equiatomic TiNi Shape Memory Alloys
,”
Metall. Trans. A
,
17
(
9
), pp.
1505
1515
.10.1007/BF02650086
26.
Verdian
,
M. M.
,
Raeissi
,
K.
,
Salehi
,
M.
, and
Sabooni
,
S.
,
2011
, “
Characterization and Corrosion Behavior of NiTi–Ti2Ni–Ni3Ti Multiphase Intermetallics Produced by Vacuum Sintering
,”
Vacuum
,
86
(
1
), pp.
91
95
.10.1016/j.vacuum.2011.04.022
27.
Landolt
,
D.
,
2002
, “
Introduction to Surface Reactions: Electrochemical Basis of Corrosion
,”
Corrosion Mechanisms in Theory and Practice
,
P.
Marcus
, ed.,
Marcel Dekker
,
New York
, pp.
1
17
.
28.
Jones
,
D. A.
,
1992
,
Principles and Prevention of Corrosion
,
MacMillan
,
New York
.
29.
Oldfield
,
J. W.
,
1988
,
Galvanic Corrosion
,
ASTM
,
Philadelphia, PA
.
30.
Deshpande
,
K. B.
,
2011
, “
Numerical Modeling of Micro-Galvanic Corrosion
,”
Electrochim. Acta
,
56
(
4
), pp.
1737
1745
.10.1016/j.electacta.2010.09.044
31.
Chan
,
C. W.
,
Man
,
H. C.
, and
Yue
,
T. M.
,
2012
, “
Susceptibility to Stress Corrosion Cracking of NiTi Laser Weldment in Hanks' Solution
,”
Corros. Sci.
,
57
, pp.
260
269
.10.1016/j.corsci.2011.12.010
32.
Yan
,
X.-J.
, and
Yang
,
D.-Z.
,
2006
, “
Corrosion Resistance of a Laser Spot-Welded Joint of NiTi Wire in Simulated Human Body Fluids
,”
J. Biomed. Mater. Res. A
,
77
(
1
), pp.
97
102
.10.1002/jbm.a.30378
33.
ASTM Standard F756-08 A.,
2013
, “Standard Practice for Assessment of Hemolytic Properties of Materials,” ASTM International, West Conshohocken, PA, pp.
1
5
.
34.
ISO 10993-5 I.,
2009
, “Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity,” ISO/TC 194, Geneva, Switzerland.
35.
ASTM Standard G5-14, 2014, “Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements,” ASTM International, West Conshohocken, PA.
36.
EPA Method 200.7, 1994, “Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Spectrometry,” U.S. Environmental Protection Agency, Cincinnati, OH.
37.
Visser
,
K. R.
,
1989
, “
Electric Conductivity of Stationary and Flowing Human Blood at Low Frequencies
,”
IEEE Engineering in Medicine and Biology Society 11th Annual International Conference
, pp.
1540
1542
.
38.
McMahon
,
R. E.
,
Ma
,
J.
,
Verkhoturov
,
S. V.
,
Munoz-Pinto
,
D.
,
Karaman
,
I.
,
Rubitschek
,
F.
,
Maier
,
H. J.
, and
Hahn
,
M. S.
,
2012
, “
A Comparative Study of the Cytotoxicity and Corrosion Resistance of Nickel–Titanium and Titanium–Niobium Shape Memory Alloys
,”
Acta Biomater.
,
8
(
7
), pp.
2863
2870
.10.1016/j.actbio.2012.03.034
39.
Satoh
,
G.
,
2013
,
Modification and Integration of Shape Memory Alloys Through Thermal Treatments and Dissimilar Metal Joining
, Ph.D. thesis,
Columbia University
, New York.
40.
Crone
,
W. C.
,
Yahya
,
A. N.
, and
Perepezko
,
J. H.
,
2001
, “
Influence of Grain Refinement on Superelasticty in NiTi
,”
Proceedings of the SEM Annual Conference on Experimental Mechanics
, Portland, OR, pp.
510
513
.
41.
Ralston
,
K. D.
,
Birbilis
,
N.
, and
Davies
,
C. H. J.
,
2010
, “
Revealing the Relationship Between Grain Size and Corrosion Rate of Metals
,”
Scr. Mater.
,
63
(
12
), pp.
1201
1204
.10.1016/j.scriptamat.2010.08.035
42.
Shih
,
C. C.
,
Lin
,
S. J.
,
Chung
,
K. H.
,
Chen
,
Y. L.
, and
Su
,
Y. Y.
,
2000
, “
Increased Corrosion Resistance of Stent Materials by Converting Current Surface Film of Polycrystalline Oxide into Amorphous Oxide
,”
J. Biomed. Mater. Res.
,
52
(
2
), pp.
323
332
.10.1002/1097-4636(200011)52:2<323::AID-JBM11>3.0.CO;2-Z
43.
Zhang
,
Y.
,
Jiang
,
S.
,
Liang
,
Y.
, and
Hu
,
L.
,
2013
, “
Simulation of Dynamic Recrystallization of NiTi Shape Memory Alloy During Hot Compression Deformation Based on Cellular Automaton
,”
Comput. Mater. Sci.
,
71
, pp.
124
134
.10.1016/j.commatsci.2013.01.019
44.
Akgun
,
O. V.
,
Urgen
,
M.
, and
Cakir
,
A. F.
,
1995
, “
The Effect of Heat Treatment on Corrosion Behavior of Laser Surface Melted 304L Stainless Steel
,”
Mater. Sci. Eng. A
,
203
(
1–2
), pp.
324
331
.10.1016/0921-5093(95)09807-0
45.
Prokofiev
,
E.
,
Burow
,
J.
,
Payton
,
E.
,
Zarnetta
,
R.
,
Frenzel
,
J.
,
Gunderov
,
D. V.
,
Valiev
,
R. Z.
, and
Eggeler
,
G.
,
2010
, “
Suppression of Ni4Ti3 Precipitation by Grain Size Refinement in Ni-Rich NiTi Shape Memory Alloys
,”
Adv. Eng. Mater.
,
12
(
8
), pp.
747
753
.10.1002/adem.201000101
You do not currently have access to this content.