Jenike, et al. [1] have presented a minimum strain energy theory to predict cylinder flow pressures in mass-flow bins. The complete variation of strain energy pressures is depicted by bounds requiring considerable numerical effort to develop for a specific cylinder geometry. Design charts are presented, but these are available for only two circular cylinder geometries. This paper summarizes and clarifies the minimum strain energy theory for predicting cylinder flow pressures. A single bound approximation which allows the magnitude of the peak flow pressure to be determined for both axisymmetric and plane flow cylinders is presented. This peak pressure may also be estimated by a single calculation of strain energy pressure. The usefulness and accuracy of these procedures are illustrated by reworking the example presented by Jenike, et al. [1].

This content is only available via PDF.
You do not currently have access to this content.