A method is developed to choose the blade spacing for a face-milling cutter that will minimize vibration. When the dynamic frequency response of a machine-tool-workpiece system is known, a special-purpose cutter can be designed to minimize the relative cutter-workpiece vibration for a particular cutting speed. When the dynamic system response is unknown the design method is limited to a general-purpose cutter to avoid resonant excitation over a broad frequency range. A nonlinear least-squares method is used to choose the blade angles for both cases. Experimental results using a general-purpose cutter with unequal blade spacing showed an appreciable reduction in noise and vibration compared to a similar cutter with equal blade spacing.

This content is only available via PDF.
You do not currently have access to this content.