Temperatures calculated by moving-heat-source theory for machining and sliding processes are often sufficiently large that the assumption of temperature-independent thermal properties is invalid. In the present paper results of a numerical analysis are presented that consider the effects of variable thermal properties on the temperatures due to a moving-band source. Compared with the constant-property model, the maximum surface temperatures are found to be significantly higher with small Peclet numbers and strong heat sources, but the average surface temperatures within the band are much less affected by the variations of thermal properties with temperature. The variable-property model also indicates significantly larger transverse temperature gradients, a phenomenon that should cause greater thermal stresses.

This content is only available via PDF.
You do not currently have access to this content.