Closed form expressions for the steady-state thermal stresses in a π/2 wedge, subject to constant-temperature heat sources on the rake and flank contact segments, are obtained from a conformal mapping solution to the steady-state heat conduction problem. It is shown, following a theorem of Muskhelishvili, that the only nonzero thermal stress in the plane-strain wedge is that acting normal to the wedge plane. The thermal stress solutions are superimposed on a previously published isothermal cutting-load solution, to give the complete thermoelastic stress distribution at the wedge surfaces. The thermoelastic stresses are then used to determine the distribution of the equivalent stress, and this gives an indication of the regions on a cutting tool which are likely to be in the plastic state. The results are discussed in relation to the problems of flank wear and rakeface crater wear in metal cutting tools.

This content is only available via PDF.
You do not currently have access to this content.