A new, unified method is proposed and demonstrated to conduct kinematic analysis of spatial mechanisms involving revolute, cylindrical, prismatic, helical and spherical pairs. The paper derives the equations for the successive screw displacements, and the equations for pair constraints. Using these equations, closed-form relationships for displacement, velocity and acceleration of single or multi-loop spatial mechanisms are obtained by (1) breaking the mechanism at a critical joint (2) unfolding the mechanism along a straight line (3) providing successive screw displacement at each joint and (4) reassembling the mechanism to form a closed loop. The application of this newly developed approach is demonstrated by considering an example of a two-loop spatial mechanism with revolute, cylindrical and spherical pairs.

This content is only available via PDF.
You do not currently have access to this content.