A theory of magnetic fluid sloshing in a solenoidal magnetic field is developed herein. It shows that (a) the free-surface waves on a magnetic fluid are dynamically similar to the waves on an ordinary liquid in a reduced gravity field, and (b) the apparent reduction in gravity depends on the strength of the applied magnetic field. But, a deviation from true low-gravity behavior occurs whenever the Bond number (ratio of effective gravitational force to surface tension force) is much smaller than 1.0. The deviation is caused by a magnetic interaction that induces a jump in pressure across the free surface. To verify the conclusions of the theory and to evaluate the usefulness of magnetic sloshing as a low-gravity sloshing simulation, an exploratory series of tests was conducted using a magnetic-colloid liquid and a large solenoidal electromagnet. Measured slosh natural frequencies agreed well with theory, but the measured slosh damping was larger than predicted by existing correlation equations.

This content is only available via PDF.
You do not currently have access to this content.