A method is presented for obtaining and optimizing the frequency response of one-dimensional damped linear continuous systems. The systems considered are assumed to contain unknown constant parameters in the boundary conditions and equations of motion which the designer can vary to obtain a minimum resonant response in some selected frequency interval. The unknown parameters need not be strictly dissipative nor unconstrained. No analytic solutions, either exact or approximate, are required for the system response and only initial value numerical integrations of the state and adjoint differential equations are required to obtain the optimal parameter set. The combinations of state variables comprising the response and the response locations are arbitrary.

This content is only available via PDF.
You do not currently have access to this content.