Abstract

The emergence of engineered living materials (ELMs) has led to the development of functional composites by combining living microorganisms with nonliving components, particularly hydrogels. Hydrogels, which mimic the extracellular matrix, support microbial growth by providing essential nutrients and promoting cell adhesion, making them ideal for ELM production. However, hydrogel-based materials often face challenges in three-dimensional printing due to poor structural integrity and limited printability, frequently requiring additional processes, precise control, and/or material modifications to enhance their printing performance. This study focuses on developing a microorganism-laden gelatin microgel and gelatin solution-based composite bioink for self-supported printing of ELMs, enhanced via microbial-induced calcium carbonate precipitation. Gelatin microgels are utilized as rheology modifiers, enabling the yield-stress fluid behavior of the bioink for improved printability and postprinting shape retention, while transglutaminase enzymatically cross-links printed structures completely, resulting in good printability. Furthermore, Sporosarcina pasteurii in the bioink enables calcium carbonate deposition during postprinting culturing, forming robust, biomineralized structures. Fabricated samples are found to have significant successful mineral deposition with over 50 wt% calcium carbonate content, and they exhibit compressive strengths of up to 1.4 MPa. This approach offers a cost-effective, energy-efficient method for creating high-strength, biocompatible biocomposites with potential applications such as bone tissue engineering, coral restoration, and sustainable building development.

References

1.
Tabrizian
,
P.
,
Davis
,
S.
, and
Su
,
B.
,
2024
, “
From Bone to Nacre-Development of Biomimetic Materials for Bone Implants: A Review
,”
Biomater. Sci.
,
12
(
22
), pp.
5680
5703
.
2.
Fernandez
,
J. G.
, and
Ng
,
S.
,
2024
, “
On Mars as It Is on Earth: Bioinspired Technologies for Sustainability on Earth Are Paving the Way for a New Era of Space Exploration
,”
APL Mater.
,
12
(
2
), p.
020901
.
3.
Srubar
,
W. V.
,
2021
, “
Engineered Living Materials: Taxonomies and Emerging Trends
,”
Trends Biotechnol.
,
39
(
6
), pp.
574
583
.
4.
Chen
,
M.
,
Xia
,
L.
,
Wu
,
C.
,
Wang
,
Z.
,
Ding
,
L.
,
Xie
,
Y.
,
Feng
,
W.
, and
Chen
,
Y.
,
2024
, “
Microbe-Material Hybrids for Therapeutic Applications
,”
Chem. Soc. Rev.
,
53
(
16
), pp.
8306
8378
.
5.
Estevez
,
A. T.
, and
Abdallah
,
Y. K.
,
2024
, “
Biomimetic Approach for Enhanced Mechanical Properties and Stability of Self-Mineralized Calcium Phosphate Dibasic–Sodium Alginate–Gelatine Hydrogel as Bone Replacement and Structural Building Material
,”
Processes
,
12
(
5
), p.
944
.
6.
Munch
,
E.
,
Launey
,
M. E.
,
Alsem
,
D. H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2008
, “
Tough, Bio-Inspired Hybrid Materials
,”
Science
,
322
(
5907
), pp.
1516
1520
.
7.
Hirsch
,
M.
,
Lucherini
,
L.
,
Zhao
,
R.
,
Saracho
,
A. C.
, and
Amstad
,
E.
,
2023
, “
3D Printing of Living Structural Biocomposites
,”
Mater. Today
,
62
(
Jan.
), pp.
21
32
.
8.
Son
,
Y.
,
Min
,
J.
,
Jang
,
I.
,
Park
,
J.
,
Yi
,
C.
, and
Park
,
W.
,
2024
, “
Enhanced Mechanical Properties of Living and Regenerative Building Materials by Filamentous Leptolyngbya boryana
,”
Cell Rep. Phys. Sci.
,
5
(
8
), p.
102098
.
9.
Heveran
,
C. M.
,
Williams
,
S. L.
,
Qiu
,
J.
,
Artier
,
J.
,
Hubler
,
M. H.
,
Cook
,
S. M.
,
Cameron
,
J. C.
, and
Srubar
,
W. V.
,
2020
, “
Biomineralization and Successive Regeneration of Engineered Living Building Materials
,”
Matter
,
2
(
2
), pp.
481
494
.
10.
Konstantinou
,
C.
, and
Wang
,
Y.
,
2023
, “
Unlocking the Potential of Microbially Induced Calcium Carbonate Precipitation (MICP) for Hydrological Applications: A Review of Opportunities, Challenges, and Environmental Considerations
,”
Hydrology
,
10
(
9
), p.
178
.
11.
Zhang
,
K.
,
Tang
,
C. S.
,
Jiang
,
N. J.
,
Pan
,
X. H.
,
Liu
,
B.
,
Wang
,
Y. J.
, and
Shi
,
B.
,
2023
, “
Microbial-Induced Carbonate Precipitation (MICP) Technology: A Review on the Fundamentals and Engineering Applications
,”
Environ. Earth Sci.
,
82
(
9
), p.
229
.
12.
Kashif Ur Rehman
,
S.
,
Mahmood
,
F.
,
Jameel
,
M.
,
Riaz
,
N.
,
Javed
,
M. F.
,
Salmi
,
A.
, and
Awad
,
Y. A.
,
2022
, “
A Biomineralization, Mechanical and Durability Features of Bacteria-Based Self-Healing Concrete—A State of the Art Review
,”
Crystals
,
12
(
9
), p.
1222
.
13.
Lee
,
J. M.
,
Ng
,
W. L.
, and
Yeong
,
W. Y.
,
2019
, “
Resolution and Shape in Bioprinting: Strategizing Towards Complex Tissue and Organ Printing
,”
Appl. Phys. Rev.
,
6
(
1
), p.
011307
.
14.
Kyle
,
S.
,
Jessop
,
Z. M.
,
Al-Sabah
,
A.
, and
Whitaker
,
I. S.
,
2017
, “
Printability of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art
,”
Adv. Healthcare Mater.
,
6
(
16
), p.
1700264
.
15.
Song
,
K.
,
Zhang
,
D.
,
Yin
,
J.
, and
Huang
,
Y.
,
2021
, “
Computational Study of Extrusion Bioprinting With Jammed Gelatin Microgel-Based Composite Ink
,”
Addit. Manuf.
,
41
, p.
101963
.
16.
Wu
,
Q.
,
Song
,
K.
,
Zhang
,
D.
,
Ren
,
B.
,
Sole-Gras
,
M.
,
Huang
,
Y.
, and
Yin
,
J.
,
2022
, “
Embedded Extrusion Printing in Yield-Stress-Fluid Baths
,”
Matter
,
5
(
11
), pp.
3775
3806
.
17.
Nindiyasari
,
F.
,
Fernández-Díaz
,
L.
,
Griesshaber
,
E.
,
Astilleros
,
J. M.
,
Sánchez-Pastor
,
N.
, and
Schmahl
,
W. W.
,
2014
, “
Influence of Gelatin Hydrogel Porosity on the Crystallization of CaCO 3
,”
Cryst. Growth Des.
,
14
(
4
), pp.
1531
1542
.
18.
Zhao
,
S.
,
Guo
,
C.
,
Kumarasena
,
A.
,
Omenetto
,
F. G.
, and
Kaplan
,
D. L.
,
2019
, “
3D Printing of Functional Microalgal Silk Structures for Environmental Applications
,”
ACS Biomater. Sci. Eng.
,
5
(
9
), pp.
4808
4816
.
19.
Cui
,
Z.
,
Feng
,
Y.
,
Liu
,
F.
,
Jiang
,
L.
, and
Yue
,
J.
,
2022
, “
3D Bioprinting of Living Materials for Structure-Dependent Production of Hyaluronic Acid
,”
ACS Macro Lett.
,
11
(
4
), pp.
452
459
.
20.
Yin
,
J.
,
Xu
,
C.
,
Zhang
,
Z.
,
Jin
,
Y.
, and
Huang
,
Y.
,
2023
, “Strategies in 3D Bioprinting of Cell-Laden Bioinks,”
Additive Manufacturing Technology
,
K.
Zhou
, ed.,
Wiley-VCH
,
Weinheim, Germany
, pp.
43
91
.
21.
Wangpraseurt
,
D.
,
You
,
S.
,
Sun
,
Y.
, and
Chen
,
S.
,
2022
, “
Biomimetic 3D Living Materials Powered by Microorganisms
,”
Trends Biotechnol.
,
40
(
7
), pp.
843
857
.
22.
Xin
,
A.
,
Su
,
Y.
,
Feng
,
S.
,
Yan
,
M.
,
Yu
,
K.
,
Feng
,
Z.
,
Lee
,
K. H.
,
Sun
,
L.
, and
Wang
,
Q.
,
2021
, “
Growing Living Composites With Ordered Microstructures and Exceptional Mechanical Properties
,”
Adv. Mater.
,
33
(
13
), p.
2006946
.
23.
Maharjan
,
S.
,
Jacqueline
,
A.
,
Cámara
,
C.
,
Rubio
,
A. G.
,
Hernández
,
D.
,
Delavaux
,
C.
,
Correa
,
E.
, et al
,
2021
, “
Symbiotic Photosynthetic Oxygenation Within 3D-Bioprinted Vascularized Tissues
,”
Matter
,
4
(
1
), pp.
217
240
.
24.
Freyman
,
M. C.
,
Kou
,
T.
,
Wang
,
S.
, and
Li
,
Y.
,
2020
, “
3D Printing of Living Bacteria Electrode
,”
Nano Res.
,
13
(
5
), pp.
1318
1323
.
25.
Rokaya
,
N.
,
Carr
,
E. C.
,
Tiwari
,
S.
,
Wilson
,
R. A.
, and
Jin
,
C.
,
2025
, “
Design of Co-Culturing System of Diazotrophic Cyanobacteria and Filamentous Fungi for Potential Application in Self-Healing Concrete
,”
Mater. Today Commun.
,
44
, p.
112093
.
26.
Hajra
,
S.
,
In-na
,
P.
,
Janpum
,
C.
,
Panda
,
S.
, and
Kim
,
H. J.
,
2023
, “
Triboelectric Nanogenerators Based on Immobilized Living Microalgae for Biomechanical Energy Harvesting
,”
Electron. Mater. Lett.
,
19
(
4
), pp.
367
373
.
27.
Chen
,
H.
,
Cheng
,
Y.
,
Tian
,
J.
,
Yang
,
P.
,
Zhang
,
X.
,
Chen
,
Y.
,
Hu
,
Y.
, and
Wu
,
J.
,
2020
, “
Dissolved Oxygen From Microalgae-Gel Patch Promotes Chronic Wound Healing in Diabetes
,”
Sci. Adv.
,
6
(
20
), p.
eaba4311
.
28.
Wangpraseurt
,
D.
,
Sun
,
Y.
,
You
,
S.
,
Chua
,
S.
,
Noel
,
S. K.
,
Willard
,
H. F.
,
Berry
,
D. B.
, et al
,
2022
, “
Bioprinted Living Coral Microenvironments Mimicking Coral-Algal Symbiosis
,”
Adv. Funct. Mater.
,
32
(
35
), p.
2202273
.
29.
Echave
,
M. C.
,
del Burgo
,
L. S.
,
Pedraz
,
J. L.
, and
Orive
,
G.
,
2017
, “
Gelatin as Biomaterial for Tissue Engineering
,”
Curr. Pharm. Des.
,
23
(
24
), pp.
3567
3584
.
30.
Aldana
,
A. A.
, and
Abraham
,
G. A.
,
2017
, “
Current Advances in Electrospun Gelatin-Based Scaffolds for Tissue Engineering Applications
,”
Int. J. Pharm.
,
523
(
2
), pp.
441
453
.
31.
Gaspar-Pintiliescu
,
A.
,
Stanciuc
,
A.
, and
Craciunescu
,
O.
,
2019
, “
Natural Composite Dressings Based on Collagen, Gelatin and Plant Bioactive Compounds for Wound Healing: A Review
,”
Int. J. Biol. Macromol.
,
138
, pp.
854
865
.
32.
Wang
,
S.
,
Sheng
,
X.
,
Huang
,
G.
,
Li
,
Q.
, and
Dong
,
Y.
,
2021
, “
Dentin Remineralization Induced by Nanobioactive Glass in Association With RGDS Peptide
,”
Mater. Today Commun.
,
28
, p.
102515
.
33.
Ding
,
Y.
,
Cai
,
M.
,
Niu
,
P.
,
Zhang
,
H.
,
Zhang
,
S.-Q.
, and
Sun
,
Y.
,
2022
, “
Ultrashort Peptides Induce Biomineralization
,”
Composites, Part B
,
244
, p.
110196
.
34.
Vagropoulou
,
G.
,
Trentsiou
,
M.
,
Georgopoulou
,
A.
,
Papachristou
,
E.
,
Prymak
,
O.
,
Kritis
,
A.
,
Epple
,
M.
,
Chatzinikolaidou
,
M.
,
Bakopoulou
,
A.
, and
Koidis
,
P.
,
2021
, “
Hybrid Chitosan/Gelatin/Nanohydroxyapatite Scaffolds Promote Odontogenic Differentiation of Dental Pulp Stem Cells and In Vitro Biomineralization
,”
Dental Mater.
,
37
(
1
), pp.
e23
36
.
35.
Grassmann
,
O.
,
Müller
,
G.
, and
Löbmann
,
P.
,
2002
, “
Organic−Inorganic Hybrid Structure of Calcite Crystalline Assemblies Grown in a Gelatin Hydrogel Matrix: Relevance to Biomineralization
,”
Chem. Mater.
,
14
(
11
), pp.
4530
4535
.
36.
Song
,
K.
,
Compaan
,
A. M.
,
Chai
,
W.
, and
Huang
,
Y.
,
2020
, “
Injectable Gelatin Microgel-Based Composite Ink for 3D Bioprinting in Air
,”
ACS Appl. Mater. Interfaces
,
12
(
20
), pp.
22453
22466
.
37.
Yang
,
J.
,
He
,
H.
,
Li
,
D.
,
Zhang
,
Q.
,
Xu
,
L.
, and
Ruan
,
C.
,
2023
, “
Advanced Strategies in the Application of Gelatin-Based Bioink for Extrusion Bioprinting
,”
Bio-Des. Manuf.
,
6
(
5
), pp.
586
608
.
38.
Shahbazi
,
M.
, and
Jäger
,
H.
,
2020
, “
Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges
,”
ACS Appl. Bio Mater.
,
4
(
1
), pp.
325
369
.
39.
Song
,
K.
,
Ren
,
B.
,
Zhai
,
Y.
,
Chai
,
W.
, and
Huang
,
Y.
,
2022
, “
Effects of Transglutaminase Cross-Linking Process on Printability of Gelatin Microgel-Gelatin Solution Composite Bioink
,”
Biofabrication
,
14
(
1
), p.
015014
.
40.
Compaan
,
A. M.
,
Song
,
K.
, and
Huang
,
Y.
,
2019
, “
Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting
,”
ACS Appl. Mater. Interfaces
,
11
(
6
), pp.
5714
5726
.
41.
Jin
,
Y.
,
Liu
,
C.
,
Chai
,
W.
,
Compaan
,
A.
, and
Huang
,
Y.
,
2017
, “
Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air
,”
ACS Appl. Mater. Interfaces
,
9
(
20
), pp.
17456
17465
.
42.
Pacheco
,
V. L.
,
Bragagnolo
,
L.
,
Reginatto
,
C.
, and
Thomé
,
A.
,
2022
, “
Microbially Induced Calcite Precipitation (MICP): Review From an Engineering Perspective
,”
Geotech. Geol. Eng.
,
40
(
5
), pp.
2379
2396
.
43.
Ribeiro
,
A.
,
Blokzijl
,
M. M.
,
Levato
,
R.
,
Visser
,
C. W.
,
Castilho
,
M.
,
Hennink
,
W. E.
,
Vermonden
,
T.
, and
Malda
,
J.
,
2017
, “
Assessing Bioink Shape Fidelity to Aid Material Development in 3D Bioprinting
,”
Biofabrication
,
10
(
1
), p.
014102
.
44.
Reinhardt
,
O.
,
Ihmann
,
S.
,
Ahlhelm
,
M.
, and
Gelinsky
,
M.
,
2023
, “
3D Bioprinting of Mineralizing Cyanobacteria as Novel Approach for the Fabrication of Living Building Materials
,”
Front. Bioeng. Biotechnol.
,
11
, p.
1145177
.
45.
Beer
,
F. P.
,
Johnston
,
E. R.
,
DeWolf
,
J. T.
,
Mazurek
,
D. F.
, and
Sanghi
,
S.
,
2020
,
Mechanics of Materials
, 8th ed.,
McGraw-Hill Education
,
New York, NY
.
46.
Lee
,
J.
,
Oh
,
S. J.
,
An
,
S. H.
,
Kim
,
W.
, and
Kim
,
S.
,
2020
, “
Machine Learning-Based Design Strategy for 3D Printable Bioink: Elastic Modulus and Yield Stress Determine Printability
,”
Biofabrication
,
12
(
3
), p.
035018
.
47.
Chung
,
J. H. Y.
,
Naficy
,
S.
,
Yue
,
Z.
,
Kapsa
,
R.
,
Quigley
,
A.
,
Moulton
,
S. E.
, and
Wallace
,
G. G.
,
2013
, “
Bio-Ink Properties and Printability for Extrusion Printing Living Cells
,”
Biomater. Sci.
,
1
(
7
), pp.
763
773
.
48.
Le Bail
,
A.
,
Ouhenia
,
S.
, and
Chateigner
,
D.
,
2011
, “
Microtwinning Hypothesis for a More Ordered Vaterite Model
,”
Powder Diffr.
,
26
(
1
), pp.
16
21
.
49.
Ševčík
,
R.
,
Pérez-Estébanez
,
M.
,
Viani
,
A.
,
Šašek
,
P.
, and
Mácová
,
P.
,
2015
, “
Characterization of Vaterite Synthesized at Various Temperatures and Stirring Velocities Without Use of Additives
,”
Powder Technol.
,
284
, pp.
265
271
.
50.
Wang
,
Z.
,
Zhang
,
J.
,
Li
,
M.
,
Guo
,
S.
,
Zhang
,
J.
, and
Zhu
,
G.
,
2022
, “
Experimental Study of Microorganism-Induced Calcium Carbonate Precipitation to Solidify Coal Gangue as Backfill Materials: Mechanical Properties and Microstructure
,”
Environ. Sci. Pollut. Res.
,
29
(
30
), pp.
45774
45782
.
51.
Rahman
,
M.
,
Dey
,
K.
,
Parvin
,
F.
,
Sharmin
,
N.
,
Khan
,
R. A.
,
Sarker
,
B.
,
Nahar
,
S.
, et al
,
2011
, “
Preparation and Characterization of Gelatin-Based PVA Film: Effect of Gamma Irradiation
,”
Int. J. Polym. Mater. Polym. Biomater.
,
60
(
13
), pp.
1056
1069
.
52.
Razali
,
N.
,
Jumadi
,
N.
,
Jalani
,
A. Y.
,
Kamarulzaman
,
N. Z.
, and
Pa’ee
,
K. F.
,
2022
, “
Thermal Decomposition of Calcium Carbonate in Chicken Eggshells: Study on Temperature and Contact Time
,”
Malay. J. Anal. Sci.
,
26
(
2
), pp.
347
359
.
53.
Mohamed
,
M.
,
Yusup
,
S.
, and
Maitra
,
S.
,
2012
, “
Decomposition Study of Calcium Carbonate in Cockle Shell
,”
J. Eng. Sci. Technol.
,
7
(
1
), pp.
1
10
.
54.
Yang
,
G.
,
Xiao
,
Z.
,
Long
,
H.
,
Ma
,
K.
,
Zhang
,
J.
,
Ren
,
X.
, and
Zhang
,
J.
,
2018
, “
Assessment of the Characteristics and Biocompatibility of Gelatin Sponge Scaffolds Prepared by Various Crosslinking Methods
,”
Sci. Rep.
,
8
(
1
), p.
1616
.
55.
Antorveza Paez
,
K.
,
Ling
,
A. S.
,
Mahamaliyev
,
N.
,
Bauer
,
G.
, and
Dillenburger
,
B.
,
2024
, “
Digital Fabrication of Biologically Cemented Spatial Structures
,”
3D Print. Addit. Manuf.
,
12
(
2
), pp.
181
191
.
You do not currently have access to this content.