Abstract

While the complexity of laser powder bed fusion (LPBF) processes facilitates customized and metal-based functional parts to be built, existing process monitoring techniques have limitations. Therefore, the need for intricate process monitoring has grown. Non-uniform emission readings are correlated with overheating. Therefore, process monitoring of areas experiencing excess thermal emission during print to track potential overheating is needed. A process monitoring technique using deep neural network-long short-term memory (DNN-LSTM) deep learning (DL) models for emission tracking has been developed. The DNN component harnesses process parameters, while the LSTM harnesses the time-series emission structure on multiple sets of prints in parallel. Moreover, trust and interpretation of the opaque methodology are needed to make the process widely applicable. Existing explainable artificial intelligence (XAI) methods are inoperative with the model developed. We overcome this gap by developing an attribution-based XAI-enabled DNN-LSTM for predicting, explaining, and evaluating layer-wise emission prediction. Interpretation from attribution-based methods, namely, Shapley additive explanations, integrated gradient explanations, and local interpretable model-agnostic explanations, reveal an estimate of how each physics variable (process parameters, layer number, layer-wise average emission readings) impacts each future layer-wise average emission behavior as decided by the DL model. Finally, existing evaluation metrics of XAI are mostly domain-focused. We overcome this gap by establishing evaluation criteria appropriate for understanding the trust of the explanations in the context of thermal emission prediction for LPBF.

References

1.
Herzog
,
D.
,
Seyda
,
V.
,
Wycisk
,
E.
, and
Emmelmann
,
C.
,
2016
, “
Additive Manufacturing of Metals
,”
Acta Mater.
,
117
, pp.
371
392
.
2.
Galkin
,
G.
,
Gawade
,
V.
,
Guo
,
W. G.
,
Yi
,
J.
, and
Guo
,
Y. B.
,
2022
, “
In-Situ and Real-Time 3D Pyrometry for Thermal History Diagnosis in Laser Fusion Process
,”
Manuf. Lett.
,
33
, pp.
862
871
.
3.
Fox
,
J. C.
,
Moylan
,
S. P.
, and
Lane
,
B. M.
,
2016
, “
Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing
,”
Proc. CIRP
,
45
, pp.
131
134
.
4.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
5.
Furumoto
,
T.
,
Ueda
,
T.
,
Alkahari
,
M. R.
, and
Hosokawa
,
A.
,
2013
, “
Investigation of Laser Consolidation Process for Metal Powder by Two-Color Pyrometer and High-Speed Video Camera
,”
CIRP Ann.
,
62
(
1
), pp.
223
226
.
6.
Afazov
,
S.
,
Denmark
,
W. A.
,
Toralles
,
B. L.
,
Holloway
,
A.
, and
Yaghi
,
A.
,
2017
, “
Distortion Prediction and Compensation in Selective Laser Melting
,”
Addit. Manuf.
,
17
, pp.
15
22
.
7.
Peter
,
N.
,
Pitts
,
Z.
,
Thompson
,
S.
, and
Saharan
,
A.
,
2020
, “
Benchmarking Build Simulation Software for Laser Powder Bed Fusion of Metals
,”
Addit. Manuf.
,
36
, p.
101531
.
8.
Wu
,
Q.
,
Hu
,
Z.
,
Qin
,
X.
,
Huang
,
B.
,
Dong
,
K.
, and
Shi
,
A.
,
2024
, “
Surface Defects 3D Localization for Fluorescent Magnetic Particle Inspection Via Regional Reconstruction and Partial-Incomplete Point Clouds Registration
,”
Expert Syst. Appl.
,
238
(
21
), p.
122225
.
9.
Kousoulas
,
P.
, and
Guo
,
Y. B.
,
2025
, “
Fatigue Scattering Analytics and Prediction of SS 316L Fabricated by Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
147
(
2),
p. 021009
.
10.
Haran
,
F. M.
,
Hand
,
D. P.
,
Peters
,
C.
, and
Jones
,
J. D.
,
1997
, “
Focus Control System for Laser Welding
,”
Appl. Opt.
,
36
(
21
), pp.
5246
5251
.
11.
Ranjan
,
R.
,
Yang
,
Y.
,
Ayas
,
C.
,
Langelaar
,
M.
, and
Van Keulen
,
F.
,
2022
, “
Controlling Local Overheating in Topology Optimization for Additive Manufacturing
,”
Proceedings of Euspen Special Interest Group Meeting: Additive Manufacturing
,
Leuven, Belgium
,
October
.
12.
Ranjan
,
R.
,
Ayas
,
C.
,
Langelaar
,
M.
, and
Van Keulen
,
F.
,
2020
, “
Fast Detection of Heat Accumulation in Powder Bed Fusion Using Computationally Efficient Thermal Models
,”
Materials
,
13
(
20
), p.
4576
.
13.
Mahato
,
V.
,
Obeidi
,
M. A.
,
Brabaon
,
D.
, and
Cunningham
,
P.
,
2023
, “
Detecting Voids in 3D Printing Using Melt Pool Times Series Data
,”
J. Intell. Manuf.
,
33
(
3
), pp.
845
852
.
14.
Pavlov
,
M.
,
Doubenskaia
,
M.
, and
Smurov
,
I.
,
2010
, “
Pyrometric Analysis of Thermal Processes in SLM Technology
,”
Phys. Proc.
,
5
, pp.
523
531
.
15.
Schilp
,
J.
,
Seidel
,
C.
,
Krauss
,
H.
, and
Weirather
,
J.
,
2014
, “
Investigations on Temperature Fields During Laser Beam Melting by Means of Process Monitoring and Multiscale Process Modelling
,”
Adv. Mech. Eng.
,
6
(
1
), p.
217584
.
16.
Guo
,
J.
,
Song
,
C.
,
Fu
,
Y.
,
Au
,
K. H.
,
Kum
,
C. W.
,
Goh
,
M. H.
,
Ren
,
T.
,
Huang
,
R.
, and
Sun
,
C.
,
2020
, “
Internal Surface Quality Enhancement of Selective Laser Melted Inconcel 718 by Abrasive Flow Machining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
101003
.
17.
Gawade
,
V.
,
Galkin
,
G.
,
Guo
,
Y. B.
, and
Guo
,
W. G.
,
2022
, “
Quantifying and Modeling Overheating Using 3D Pyrometry Map in Powder Bed Fusion
,”
Manuf. Lett.
,
33
, pp.
880
892
.
18.
Guo
,
W. G.
,
Gawade
,
V.
,
Zhang
,
B.
, and
Guo
,
Y. B.
,
2023
, “
Explainable AI for Layer-Wise Emission Prediction in Laser Fusion
,”
CIRP Ann.
,
72
(
1
), pp.
437
440
.
19.
Lei
,
R.
,
Guo
,
Y. B.
, and
Guo
,
W. G.
,
2024
, “
Physics-Guided Long Short-Term Memory Networks for Emission Prediction in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
146
(
1
), p.
011006
.
20.
Linardatos
,
P.
,
Papastefanopoulos
,
V.
, and
Kotsiantis
,
S.
,
2020
, “
Explainable AI: A Review of Machine Learning Interpretability Methods
,”
Entropy
,
23
(
1
), p.
18
.
21.
Brito
,
L.
,
Susto
,
G.
,
Brito
,
J.
, and
Duarte
,
M.
,
2023
, “
Fault Diagnosis Using Explainable AI: A Transfer Learning-Based Approach for Rotating Machinery Exploiting Augmented Synthetic Data
,”
Expert Syst. Appl.
,
232
, p.
120860
.
22.
Onchis
,
D. M.
, and
Gillich
,
G.
,
2021
, “
Stable and Explainable Deep Learning Damage Prediction for Prismatic Cantilever Steel Beam
,”
Comput. Ind.
,
125
, p.
103359
.
23.
Tiensuu
,
H.
,
Tamminen
,
S.
,
Puukko
,
E.
, and
Röning
,
J.
,
2021
, “
Evidence-Based and Explainable Smart Decision Support for Quality Improvement in Stainless Steel Manufacturing
,”
Appl. Sci.
,
11
(
22
), p.
10897
.
24.
Ma
,
Q.
,
Zhong
,
Y.
,
Wang
,
Z.
, and
Bukkapatnam
,
S.
,
2024
, “
Effect of Microstructure of the Machinability of Natural Fiber Reinforced Plastic Composites: A Novel Explainable Machine Learning (XML) Approach
,”
ASME J. Manuf. Sci. Eng.
,
146
(
3
), p.
031003
.
25.
Sundar
,
S.
,
Rajagopal
,
M. C.
,
Zhao
,
H.
,
Kuntumalla
,
G.
,
Meng
,
Y.
,
Chang
,
H. C.
,
Shao
,
C.
,
Ferreira
,
P.
,
Miljkovic
,
N.
, and
Sinha
,
S.
,
2020
, “
Fouling Modeling and Prediction Approach for Heat Exchangers Using Deep Learning
,”
Int. J. Heat Mass Transfer
,
159
, p.
120112
.
26.
Lavasa
,
E.
,
Chadoulos
,
C.
,
Siouras
,
A.
,
Etxabarri Llana
,
A.
,
Rodríguez Del Rey
,
S.
,
Dalamagas
,
T.
, and
Moustakidis
,
S.
,
2024
, “Toward Explainable Metrology 4.0: Utilizing Explainable AI to Predict the Pointwise Accuracy of Laser Scanning Devices in Industrial Manufacturing,”
Artificial Intelligence in Manufacturing: Enabling Intelligent, Flexible and Cost-Effective Production Through AI
,
Springer Nature Switzerland
,
Cham, Switzerland
, pp.
479
501
.
27.
Aboulhosn
,
Z.
,
Musamih
,
A.
,
Salah
,
K.
,
Jayaraman
,
R.
,
Omar
,
M.
, and
Aung
,
Z.
,
2024
, “
Detection of Manufacturing Defects in Steel Using Deep Learning With Explainable Artificial Intelligence
,”
IEEE Access
,
12
, pp.
99240
99257
.
28.
Goldman
,
C. V.
,
Baltaxe
,
M.
,
Chakraborty
,
D.
,
Arinez
,
J.
, and
Diaz
,
C. E.
,
2023
, “
Interpreting Learning Models in Manufacturing Processes: Towards Explainable AI Methods to Improve Trust in Classifier Predictions
,”
J. Ind. Inf. Integr.
,
33
, p.
100439
.
29.
Hanchate
,
A.
,
Bukkapatnam
,
S. T.
,
Lee
,
K. H.
,
Srivastava
,
A.
, and
Kumara
,
S.
,
2023
, “
Explainable AI (XAI)-Driven Vibration Sensing Scheme for Surface Quality Monitoring in a Smart Surface Grinding Process
,”
J. Manuf. Processes
,
99
, pp.
184
194
.
30.
Kharate
,
N.
,
Anerao
,
P.
,
Kulkarni
,
A.
, and
Abdullah
,
M.
,
2024
, “
Explainable AI Techniques for Comprehensive Analysis of the Relationship Between Process Parameters and Material Properties in FDM-Based 3D-Printed Biocomposites
,”
J. Manuf. Mater. Process.
,
8
(
4
), p.
171
.
31.
Pelzer
,
L.
,
Schulze
,
T.
,
Buschmann
,
D.
,
Enslin
,
C.
,
Schmitt
,
R.
, and
Hopmann
,
C.
,
2023
, “
Acquiring Process Knowledge in Extrusion-Based Additive Manufacturing Via Interpretable Machine Learning
,”
Polymers
,
15
(
17
), p.
3509
.
32.
Pandiyan
,
V.
,
Wróbel
,
R.
,
Leinenbach
,
C.
, and
Shevchik
,
S.
,
2023
, “
Optimizing In-Situ Monitoring for Laser Powder Bed Fusion Process: Deciphering Acoustic Emission and Sensor Sensitivity With Explainable Machine Learning
,”
J. Mater. Process. Technol.
,
321
, p.
118144
.
33.
Regal
,
E.
,
Gawade
,
V.
, and
Guo
,
W.
,
2024, June
, “
Physics-Informed Loss Functions With Explainable AI to Predict Emission in Powder Bed Fusion
,”
International Manufacturing Science and Engineering Conference
, Vol.
88117
,
American Society of Mechanical Engineers
, p.
V002T07A010
.
34.
Zhang
,
Y.
,
Du
,
H.
,
Zhao
,
K.
,
Gao
,
J.
,
Peng
,
X.
,
Cheng
,
L.
,
Fang
,
C.
, and
Chen
,
G.
,
2025
, “
In-Situ Quality Inspection Based on Coaxial Melt Pool Images for Laser Powder Bed Fusion With Depth Graph Network Guided by Prior Knowledge
,”
Mech. Syst. Signal Process.
,
224
, p.
111993
.
35.
Sato
,
M. M.
,
Wong
,
V. W.
,
Yeung
,
H.
,
Witherell
,
P.
, and
Law
,
K. H.
,
2024
, “
Identification and Interpretation of Melt Pool Shapes in Laser Powder Bed Fusion With Machine Learning
,”
Smart Sustainable. Manuf. Syst.
,
8
(
1
), pp.
1
23
.
36.
Gawade
,
V.
,
Guo
,
Y. B.
, and
Guo
,
W. G.
,
2022
, “
Layer-Wise Emissivity Prediction in Powder Bed Fusion Using Time Series and Deep Learning Models
,”
IISE Annual Conference Proceedings
,
Seattle, WA
,
May 21–24
, pp.
1
6
.
37.
Lundberg
,
S. M.
, and
Lee
,
S.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
Adv. Neural Inf. Process. Syst.
,
30
, pp.
1
10
.
38.
Ribeiro
,
M. T.
,
Singh
,
S.
, and
Guestrin
,
C.
,
2016
, “
‘Why Should I Trust You?’ Explaining the Predictions of Any Classifier
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13–17
, pp.
1135
1144
.
39.
Sundararjan
,
M.
,
Taly
,
A.
, and
Yan
,
Q.
,
2017
, “
Axiomatic Attribution for Deep Networks
,”
International Conference on Machine Learning
,
Sydney, NSW, Australia
,
Aug. 6–11
, pp.
3319
3328
.
40.
Doumard
,
E.
,
Aligon
,
J.
,
Escriva
,
E.
,
Excoffier
,
J.
,
Monsarrat
,
P.
, and
Soulé-Dupuy
,
C.
,
2023
, “
A Quantitative Approach for the Comparison of Additive Local Explanation Methods
,”
Inf. Syst.
,
114
, p.
102162
.
41.
Krishna
,
S.
,
Han
,
T.
,
Gu
,
A.
,
Pombra
,
J.
,
Jabbari
,
S.
,
Wu
,
S.
, and
Lakkaraju
,
H.
,
2024
, “The Disagreement Problem in Explainable Machine Learning: A Practitioner’s Perspective,” arXiv Preprint.
You do not currently have access to this content.