Abstract

Spin-extrusion forming (SEF) is an innovative method for manufacturing thin-walled cylindrical rings with external cross ribs (TCRECR). The meshing motion between the feeding roll and the component shapes the rib, while the feed motion of the feeding roll causes the rib height to grow. The contour design of the feeding roll is critical, as an unsuitable design will produce motion interference, resulting in rib folding problems. This article proposes two evaluation indices to characterize the rib folding defects, one is the rib aspect ratio and the other is the relative error between the feeding roll profile's and the component profile's enclosed areas. Based on the reverse envelope motion experiments, mathematical models for evaluation indices are established, and the forming boundaries of SEF processing are determined through finite element (FE) simulations. Thus, a semianalytic model for rib defect prediction is obtained, and its effectiveness is verified based on current experimental platforms. Furthermore, the plastic flow during SEF processing is analyzed, and the mechanism of external rib folding is systematically studied. When the relative area error exceeds a certain threshold, research indicates two causes for rib folding defects. One reason is that the growth rate on both sides of the rib will be greater than that in the middle due to an increase in the squeezing force of the feeding roll on both sides. Another reason is that the motion interference between the component and the feeding roll intensifies, and the material surrounding the center folds from both sides.

References

1.
Luo
,
X.
,
Zhou
,
H.
,
Ren
,
X.
, and
Meng
,
Z.
,
2023
, “
Three-Stage Optimization Framework of Functionally Graded Stiffened Cylindrical Shells Under Thermal Environment
,”
Eng. Struct.
,
292
, p.
116541
.
2.
Hao
,
P.
,
Wang
,
B.
,
Li
,
G.
,
Meng
,
Z.
,
Tian
,
K.
, and
Tang
,
X.
,
2014
, “
Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method
,”
Thin-Walled Structures
,
82
, pp.
46
54
.
3.
Li
,
X.
,
Sun
,
C.
,
Qian
,
L.
,
Sun
,
J.
, and
Liu
,
J.
,
2023
, “
Flow Defects of Rib-Web Components in Isothermal Local-Loading Forming Process
,”
Int. J. Adv. Manuf. Technol.
,
125
(
7
), pp.
3417
3429
.
4.
Deng
,
J.
,
Yuan
,
T.
,
Liu
,
Y.
,
Qian
,
D.
,
Mao
,
H.
, and
Zhang
,
Y.
,
2023
, “
Numerical Simulation and Experimental Study on Two-Stage Flow Forming for Thin-Walled Tubular Parts With Deep Longitudinal Outer Ribs
,”
Int. J. Adv. Manuf. Technol.
,
125
(
5
), pp.
2517
2533
.
5.
Yao
,
Y.
,
Fan
,
X.
,
Wang
,
L.
,
Zhan
,
M.
, and
Bai
,
D.
,
2024
, “
Innovative Local Shear Forming Method for Enhanced Formability of Tubular Parts With High Stiffened Ribs
,”
J. Mater. Process. Technol.
,
327
, p.
118380
.
6.
Zhang
,
Z.
,
Chen
,
Z.
,
Xue
,
Y.
,
Zhang
,
X.
, and
Wang
,
Q.
,
2024
, “
Investigation on Low Hydrostatic Stress Extrusion Technology for Forming of Large Thin-Walled Components With High Rib
,”
Int. J. Mach. Tools Manuf.
,
198
, p.
104149
.
7.
Hua
,
L.
,
Tian
,
D.
,
Han
,
X.
, and
Zhuang
,
W.
,
2023
, “
Modelling and Analysis of Metal Flowing Behaviors in Constraining Ring Rolling of Tapered Ring With Thin Wall and Three High Ribs
,”
Chin. J. Aeronaut.
,
36
(
06
), pp.
476
492
.
8.
Wang
,
B.
,
Hao
,
P.
,
Li
,
G.
,
Zhang
,
J.-X.
,
Du
,
K.-F.
,
Tian
,
K.
,
Wang
,
X.-J.
, and
Tang
,
X.-H.
,
2014
, “
Optimum Design of Hierarchical Stiffened Shells for Low Imperfection Sensitivity
,”
Acta Mech. Sin.
,
30
(
03
), pp.
391
402
.
9.
Lyu
,
W.
,
Zhan
,
M.
,
Gao
,
P.
,
Ma
,
F.
,
Li
,
R.
,
Zhang
,
H.
, and
Dong
,
Y.
,
2022
, “
Rib Filling Behavior in Flow Forming of Thin-Walled Tube With Helical Grid-Stiffened Ribs
,”
Int. J. Adv. Manuf. Technol.
,
119
(
5–6
), pp.
2877
2894
.
10.
Xia
,
Q.
,
Long
,
J.
,
Xiao
,
G.
,
Yuan
,
S.
, and
Qin
,
Y.
,
2021
, “
Deformation Mechanism of ZK61 Magnesium Alloy Cylindrical Parts With Longitudinal Inner Ribs During Hot Backward Flow Forming
,”
J. Mater. Process. Technol.
,
296
, p.
117197
.
11.
Yuan
,
S.
,
Xia
,
Q.
,
Long
,
J.
,
Xiao
,
G.
, and
Cheng
,
X.
,
2020
, “
Study of the Microstructures and Mechanical Properties of ZK61 Magnesium Alloy Cylindrical Parts With Inner Ribs Formed by Hot Power Spinning
,”
Int. J. Adv. Manuf. Technol.
,
111
(
3–4
), pp.
851
860
.
12.
Cui
,
J.
,
Zhao
,
Y.
,
Li
,
X.
,
Yu
,
Z.
, and
Li
,
S.
,
2021
, “
Research on the Influence of Ultrasonic on the Inner Rib's Surface Morphology of Ribbed Cylindrical Parts in Flow Spinning Process
,”
J. Manuf. Processes
,
67
, pp.
376
387
.
13.
Li
,
S.
,
Zhu
,
Z.
,
Zhao
,
Y.
, and
Yu
,
Z.
,
2024
, “
Numerical Simulation of Ultrasonic Field and Its Acoustoplastic Influence on Ribbed Cylindrical Parts in Ultrasonic-Assisted Flow Spinning Process
,”
J. Manuf. Processes
,
121
, pp.
408
426
.
14.
Yu
,
Z.
,
Meng
,
Y.
,
Zhou
,
Y.
, and
Zhao
,
Y.
,
2023
, “
Study on Multi-Roller Flow Forming Process of Aluminum Alloy Cylinders With Cross Ribs
,”
Int. J. Adv. Manuf. Technol.
,
125
(
7–8
), pp.
3489
3501
.
15.
Lyu
,
W.
,
Zhan
,
M.
,
Gao
,
P. F.
,
Li
,
M.
,
Lei
,
Y. D.
, and
Ma
,
F.
,
2021
, “
Improvement of Rib-Grid Structure of Thin-Walled Tube With Helical Grid-Stiffened Ribs Based on the Multi-Mode Filling Behaviors in Flow Forming
,”
J. Mater. Process. Technol.
,
296
, p.
117167
.
16.
Zeng
,
X.
,
Fan
,
X. G.
,
Li
,
H. W.
,
Zhan
,
M.
,
Li
,
S. H.
,
Wu
,
K. Q.
, and
Ren
,
T. W.
,
2020
, “
Heterogeneous Microstructure and Mechanical Property of Thin-Walled Tubular Part With Cross Inner Ribs Produced by Flow Forming
,”
Mater. Sci. Eng. A
,
790
, p.
139702
.
17.
Zeng
,
X.
,
Fan
,
X. G.
,
Li
,
H. W.
,
Zhan
,
M.
,
Zhang
,
H. R.
,
Wu
,
K. Q.
,
Ren
,
T. W.
, and
Li
,
S. H.
,
2020
, “
Die Filling Mechanism in Flow Forming of Thin-Walled Tubular Parts With Cross Inner Ribs
,”
J. Manuf. Processes
,
58
, pp.
832
844
.
18.
Qian
,
D.
,
Li
,
G.
,
Deng
,
J.
, and
Wang
,
F.
,
2020
, “
Effect of Die Structure on Extrusion Forming of Thin-Walled Component With I-Type Longitudinal Ribs
,”
Int. J. Mech. Sci.
,
108
(
5–6
), pp.
1959
1971
.
19.
Tian
,
D.
,
Han
,
X.
,
Hua
,
L.
, and
Yang
,
S.
,
2020
, “
A Novel Process for Axial Closed Extrusion of Ring Part With Mesh-Like Ribs
,”
Int. J. Mech. Sci.
,
165
, p.
105186
.
20.
Deng
,
J.
,
Wu
,
R.
,
Qian
,
D.
, and
Wu
,
Y.
,
2022
, “
Numerical Simulation and Experimental Study on Radial Squeezing Forming of Ring With Inner Grid Ribs
,”
Int. J. Adv. Manuf. Technol.
,
120
(
11–12
), pp.
8153
8167
.
21.
Chen
,
Z.
,
Zhang
,
Z.
,
Zheng
,
J.
, and
Xue
,
Y.
,
2023
, “
Radially Loading Rotary Extrusion for Manufacturing Large-Size Conical Cylinders With Inner Transverse High Ribs
,”
Chin. J. Aeronaut.
,
36
(
5
), pp.
582
594
.
22.
Kalligeros
,
C.
,
Papalexis
,
C.
,
Vasileiou
,
G.
,
Tzouganakis
,
P.
,
Spitas
,
C.
, and
Spitas
,
V.
,
2023
, “
Exploiting Double-Flank Roll Testing Spur Gear Measurements to Determine Gear Parameter Deviations Through Numerical Simulation of Free-Form Meshing Gears
,”
Simul. Modell. Pract. Theory
,
126
, p.
102757
.
23.
Ma
,
Z.
,
Luo
,
Y.
,
Wang
,
Y.
, and
Mao
,
J.
,
2018
, “
Geometric Design of the Rolling Tool for Gear Roll-Forming Process With Axial-Infeed
,”
J. Mater. Process. Technol.
,
258
, pp.
67
79
.
24.
Han
,
X.
,
Hua
,
L.
,
Peng
,
L.
, and
Feng
,
W.
,
2020
, “
An Innovative Radial Envelope Forming Method for Manufacturing Thin Walled Cylindrical Ring With Inner Web Ribs
,”
J. Mater. Process. Technol.
,
286
, p.
116836
.
25.
Chen
,
X.
,
Yu
,
Z.
,
Chen
,
W.
,
Wang
,
F.
,
Zhao
,
Y.
, and
Lin
,
Z.
,
2024
, “
Study on Generating Rolling Method for Manufacturing Cylindrical Parts With External Cross Ribs
,”
J. Manuf. Processes
,
111
, pp.
1
20
.
26.
Han
,
X.
,
Min
,
Y.
,
Zhuang
,
W.
,
Hua
,
L.
,
Tian
,
D.
,
Deng
,
Z.
, and
Liu
,
N.
,
2023
, “
Radial Envelope Forming Mechanism and Process Design Method for Cylindrical Rings With Thin Wall and High Web Ribs
,”
Chin. J. Aeronaut.
,
36
(
12
), pp.
461
476
.
27.
Gao
,
P. F.
,
Yang
,
H.
,
Fan
,
X. G.
, and
Lei
,
P. H.
,
2015
, “
Quick Prediction of the Folding Defect in Transitional Region During Isothermal Local Loading Forming of Titanium Alloy Large-Scale Rib-Web Component Based on Folding Index
,”
J. Mater. Process. Technol.
,
219
, pp.
101
111
.
28.
Gao
,
P.
,
Li
,
X.
,
Yang
,
H.
,
Fan
,
X.
, and
Lei
,
Z.
,
2017
, “
Improving the Process Forming Limit Considering Forming Defects in the Transitional Region in Local Loading Forming of Ti-Alloy Rib-Web Components
,”
Chin. J. Aeronaut.
,
30
(
3
), pp.
1270
1280
.
29.
Lin
,
P.
,
Guan
,
Y.
,
Kong
,
P.
,
Jiang
,
S.
,
Sun
,
D.
,
Guo
,
S.
,
Yan
,
B.
,
Feng
,
H.
,
Yang
,
L.
, and
Zhang
,
Y.
,
2024
, “
Transfer Mechanisms of Folding Defect for Thin-Walled Tube End Flanges Formed by Flaring-Upsetting Hybrid Process
,”
J. Manuf. Processes
,
125
, pp.
321
336
.
30.
Feng
,
W.
, and
Zhao
,
P.
,
2024
, “
Buckling Defect Optimization of Constrained Ring Rolling of Thin-Walled Conical Rings With Inner High Ribs Combining Response Surface Method With FEM
,”
Metals
,
14
(
4
), p.
378
.
31.
Ge
,
X.
,
Yu
,
Y.
,
Yu
,
H.
, and
Wang
,
G.
,
2023
, “
Study on Folding Defect Elimination Method of Track Link Forging Based on Preforming Design
,”
Int. J. Precis. Eng. Manuf.
,
24
(
1
), pp.
61
71
.
32.
Gao
,
P. F.
,
Fei
,
M. Y.
,
Yan
,
X. G.
,
Wang
,
S. B.
,
Li
,
Y. K.
,
Xing
,
L.
,
Wei
,
K.
,
Zhan
,
M.
,
Zhou
,
Z. T.
, and
Keyim
,
Z.
,
2019
, “
Prediction of the Folding Defect in Die Forging: A Versatile Approach for Three Typical Types of Folding Defects
,”
J. Manuf. Processes
,
39
, pp.
181
191
.
33.
Gary Wang
,
G.
, and
Shan
,
S.
,
2006
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
34.
Grosso
,
A.
,
Jamali
,
A. R. M. J. U.
, and
Locatelli
,
M.
,
2009
, “
Finding Maximin Latin Hypercube Designs by Iterated Local Search Heuristics
,”
Eur. J. Oper. Res.
,
197
(
2
), pp.
541
547
.
You do not currently have access to this content.