Abstract

As the next step in extraterrestrial exploration, many engineers and scientists revealed their intense interest in enabling multiplanetary human life, including colonizing Mars. This study demonstrates that architecture on Mars can be realized by designing a synthetic community, including diazotrophic cyanobacteria and filamentous fungi, which produce large amounts of biomaterials to bond Martian regolith particles into a consolidated body. Through 3D printing, a wide range of structures can be fabricated, such as buildings, houses, tables, and chairs. Within the synthetic community, diazotrophic cyanobacteria will (1) fix carbon dioxide and dinitrogen from the atmosphere and convert them into oxygen and organic nutrients to help the survival and growth of filamentous fungi and (2) increase the concentration of carbonate ions by photosynthetic activities. Filamentous fungi will (1) bind metal ions onto fungal cell walls and serve as nucleation sites for biomineral production and (2) enhance the growth of cyanobacteria by providing them with water, minerals, and carbon dioxide. In this study, such coculture systems have been created and displayed robust growth solely based on Martian regolith simulants, air, light, and an inorganic liquid medium without any additional carbon or nitrogen sources. The cyanobacterial and fungal growth in such coculture systems is much more robust than their axenic growth due to mutual interactions. The amounts and morphologies of the precipitated crystals vary remarkably depending on the cultivation condition.

References

1.
Brown
,
F.
,
2018
, “
Surviving Mars Review
,” PC Gamer, https://www.pcgamer.com/surviving-mars-review/, Accessed May 19, 2025.
2.
Hudson
,
D.
,
2013
, “
Magnus Larsson Sculpts the Saharan Desert With Bacteria
,” Designboom, https://www.designboom.com/architecture/magnus-larsson-sculpts-the-saharan-desert-with-bacteria/, Accessed May 19, 2025.
3.
Scott
,
A.
,
Oze
,
C.
, and
Hughes
,
M. W.
,
2020
, “
Magnesium-Based Cements for Martian Construction
,”
J. Aerosp. Eng.
,
33
(
4
), p.
4020019
.
4.
Wan
,
L.
,
Wendner
,
R.
, and
Cusatis
,
G.
,
2016
, “
A Novel Material for In Situ Construction on Mars: Experiments and Numerical Simulations
,”
Constr. Build. Mater.
,
120
, pp.
222
231
.
5.
Alexiadis
,
A.
,
Alberini
,
F.
, and
Meyer
,
M. E.
,
2017
, “
Geopolymers From Lunar and Martian Soil Simulants
,”
Adv. Space Res.
,
59
(
1
), pp.
490
495
.
6.
Ednie-Brown
,
P.
,
2013
, “
bioMASON and the Speculative Engagements of Biotechincal Architecture
,”
Archit. Des.
,
83
, pp.
84
91
.
7.
Bayer
,
E.
, and
Mclntyre
,
G.
,
2009
, “
Method for Producing Rapidly Renewable Chitinous Material Using Fungal Fruiting Bodies and Product Made Thereby
,” U.S. Patent No. 20090307969A1.
8.
Dikshit
,
R.
,
Gupta
,
N.
,
Dey
,
A.
,
Viswanathan
,
K.
, and
Kumar
,
A.
,
2022
, “
Microbial Induced Calcite Precipitation Can Consolidate Martian and Lunar Regolith Simulants
,”
PLoS One
,
17
(
4
), p.
e0266415
.
9.
Rothschild
,
L.
,
2018
, “
Myco-Architecture Off Planet: Growing Surface Structures at Destination
,” NASA Ames Research Center, https://www.nasa.gov/directorates/spacetech/niac/2018_Phase_I_Phase_II/Myco-architecture_off_planet, Accessed May 19, 2025.
10.
Beatty
,
D. N.
,
Williams
,
S. L.
, and
Srubar
,
W. V.
, III
,
2022
, “
Biomineralized Materials for Sustainable and Durable Construction
,”
Annu. Rev. Mater. Res.
,
52
(
1
), pp.
411
439
.
11.
Jin
,
C.
,
Yu
,
R.
, and
Shui
,
Z.
,
2018
, “
Fungi: A Neglected Candidate for the Application of Self-Healing Concrete
,”
Front. Built Environ.
,
4
, p.
62
.
12.
Zhang
,
X.
,
Fan
,
X.
,
Li
,
M.
,
Samia
,
A.
, and
Yu
,
X.
,
2021
, “
Study on the Behaviors of Fungi-Concrete Surface Interactions and Theoretical Assessment of Its Potentials for Durable Concrete With Fungal-Mediated Self-Healing
,”
J. Cleaner Prod.
,
292
, p.
125870
.
13.
Luo
,
J.
,
Chen
,
X.
,
Crump
,
J.
,
Zhou
,
H.
,
Davies
,
D. G.
,
Zhou
,
G.
,
Zhang
,
N.
, and
Jin
,
C.
,
2018
, “
Interactions of Fungi With Concrete: Significant Importance for Bio-Based Self-Healing Concrete
,”
Constr. Build. Mater.
,
164
, pp.
275
285
.
14.
Jiang
,
L.
,
Li
,
T.
,
Jenkins
,
J.
,
Hu
,
Y.
,
Brueck
,
C. L.
,
Pei
,
H.
, and
Betenbaugh
,
M. J.
,
2020
, “
Evidence for a Mutualistic Relationship Between the Cyanobacteria Nostoc and Fungi Aspergilli in Different Environments
,”
Appl. Microbiol. Biotechnol.
,
104
(
14
), pp.
6413
6426
.
15.
Eichler
,
A.
,
Hadland
,
N.
,
Pickett
,
D.
,
Masaitis
,
D.
,
Handy
,
D.
,
Perez
,
A.
,
Batcheldor
,
D.
,
Wheeler
,
B.
, and
Palmer
,
A.
,
2021
, “
Challenging the Agricultural Viability of Martian Regolith Simulants
,”
Icarus
,
354
, p.
114022
.
16.
Menon
,
R. R.
,
Luo
,
J.
,
Chen
,
X.
,
Zhou
,
H.
,
Liu
,
Z.
,
Zhou
,
G.
,
Zhang
,
N.
, and
Jin
,
C.
,
2019
, “
Screening of Fungi for Potential Application of Self-Healing Concrete
,”
Sci. Rep.
,
9
(
1
), p.
2075
.
17.
Padan
,
E.
,
Bibi
,
E.
,
Ito
,
M.
, and
Krulwich
,
T. A.
,
2005
, “
Alkaline pH Homeostasis in Bacteria: New Insights
,”
Biochim. Biophys. Acta
,
1717
(
2
), pp.
67
88
.
18.
Blanco-Rivero
,
A.
,
Leganes
,
F.
,
Fernandez-Valiente
,
E.
,
Calle
,
P.
, and
Fernandez-Pinas
,
F.
,
2005
, “
mrpA, a Gene With Roles in Resistance to Na+ and Adaptation to Alkaline pH in the Cyanobacterium Anabaena sp. PCC7120
,”
Microbiology
,
151
(
5
), pp.
1671
1682
.
19.
Hoffmann
,
D.
,
Gutekunst
,
K.
,
Klissenbauer
,
M.
,
Schulz-Friedrich
,
R.
, and
Appel
,
J.
,
2006
, “
Mutagenesis of Hydrogenase Accessory Genes of Synechocystis sp. PCC 6803. Additional Homologues of HypA and HypB Are Not Active in Hydrogenase Maturation
,”
FEBS J.
,
273
(
19
), pp.
4516
4527
.
20.
Ushimaru
,
T.
,
Nishiyama
,
Y.
,
Hayashi
,
H.
, and
Murata
,
N.
,
2002
, “
No Coordinated Transcriptional Regulation of the Sod-Kat Antioxidative System in Synechocystis sp. PCC 6803
,”
J. Plant Physiol.
,
159
(
7
), pp.
805
807
.
21.
Rokaya
,
N.
,
Carr
,
E. C.
,
Tiwari
,
S.
,
Wilson
,
R. A.
, and
Jin
,
C.
,
2025
, “
Design of Co-Culturing System of Diazotrophic Cyanobacteria and Filamentous Fungi for Potential Application in Self-Healing Concrete
,”
Mater. Today Commun.
,
44
, p.
112093
.
22.
Verseux
,
C.
,
Ramalho
,
T. P.
,
Bohuon
,
E.
,
Kunst
,
N.
,
Lang
,
V.
, and
Heinicke
,
C.
,
2024
, “
Dependence of Cyanobacterium Growth and Mars-Specific Photobioreactor Mass on Total Pressure, pN2 and pCO2
,”
npj Microgravity
,
10
(
1
), p.
101
.
23.
Verseux
,
C.
,
Heinicke
,
C.
,
Ramalho
,
T. P.
,
Determann
,
J.
,
Duckhorn
,
M.
,
Smagin
,
M.
, and
Avila
,
M.
,
2021
, “
A Low-Pressure, N2/CO2 Atmosphere Is Suitable for Cyanobacterium-Based Life-Support Systems on Mars
,”
Front. Microbiol.
,
12
, p.
67
.
24.
Saad
,
M. H.
,
Sidkey
,
N. M.
, and
El-Fakharany
,
E. M.
,
2023
, “
Identification and Statistical Optimization of a Novel Alginate Polymer Extracted From Newly Isolated Synechocystis Algini MNE ON864447 With Antibacterial Activity
,”
Microb. Cell Fact.
,
22
(
1
), p.
229
.
25.
Rutz
,
A. L.
,
Hyland
,
K. E.
,
Jakus
,
A. E.
,
Burghardt
,
W. R.
, and
Shah
,
R. N.
,
2015
, “
A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels
,”
Adv. Mater.
,
27
(
9
), pp.
1607
1614
.
26.
Foster
,
A. A.
,
Marquardt
,
L. M.
, and
Heilshorn
,
S. C.
,
2017
, “
The Diverse Roles of Hydrogel Mechanics in Injectable Stem Cell Transplantation
,”
Curr. Opin. Chem. Eng.
,
15
, pp.
15
23
.
27.
Datta
,
D.
,
Weiss
,
E. L.
,
Wangpraseurt
,
D.
,
Hild
,
E.
,
Chen
,
S.
,
Golden
,
J. W.
,
Golden
,
S. S.
, and
Pokorski
,
J. K.
,
2023
, “
Phenotypically Complex Living Materials Containing Engineered Cyanobacteria
,”
Nat. Commun.
,
14
(
1
), p.
4742
.
28.
Sole-Gras
,
M.
,
Ren
,
B.
,
Ryder
,
B. J.
,
Ge
,
J.
,
Huang
,
J.
,
Chai
,
W.
,
Yin
,
J.
, et al
,
2024
, “
Vapor-Induced Phase-Separation-Enabled Versatile Direct Ink Writing
,”
Nat. Commun.
,
15
(
1
), p.
3058
.
29.
Dubbin
,
K.
,
Hori
,
Y.
,
Lewis
,
K. K.
, and
Heilshorn
,
S. C.
,
2016
, “
Dual-Stage Crosslinking of a Gel-Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting
,”
Adv. Healthcare Mater.
,
5
(
19
), pp.
2488
2492
.
30.
Rahman
,
A. M.
,
Bedsole
,
C. O.
,
Akib
,
Y. M.
,
Hamilton
,
J.
,
Rahman
,
T. T.
,
Shaw
,
B. D.
, and
Pei
,
Z.
,
2024
, “
Effects of Sodium Alginate and Calcium Chloride on Fungal Growth and Viability in Biomass-Fungi Composite Materials Used for 3D Printing
,”
Biomimetics
,
9
(
4
), p.
251
.
You do not currently have access to this content.