Abstract

This work concerns the laser powder bed fusion (LPBF) additive manufacturing process. We developed and implemented a physics-based approach for layerwise control of the thermal history of an LPBF part. Controlling the thermal history of an LPBF part during the process is crucial as it influences critical-to-quality characteristics, such as porosity, solidified microstructure, cracking, surface finish, and geometric integrity, among others. Typically, LPBF processing parameters are optimized through exhaustive empirical build-and-test procedures. However, because thermal history varies with geometry, processing parameters seldom transfer between different part shapes. Furthermore, particularly in complex parts, the thermal history can vary significantly between layers leading to both within-part and between-part variation in properties. In this work, we devised an autonomous physics-based controller to maintain the thermal history within a desired window by optimizing the processing parameters layer by layer. This approach is a form of digital feedforward model predictive control. To demonstrate the approach, five thermal history control strategies were tested on four unique part geometries (20 total parts) made from stainless steel 316L alloy. The layerwise control of the thermal history significantly reduced variations in grain size and improved geometric accuracy and surface finish. This work provides a pathway for rapid, shape-agnostic qualification of LPBF part quality through control of the causal thermal history as opposed to expensive and cumbersome trial-and-error parameter optimization.

References

1.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Understanding Laser Powder Bed Fusion Surface Roughness
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071003
.
2.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
3.
Sames
,
W. J.
,
List
,
F. A.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
315
360
.
4.
Das
,
S.
,
Bourell
,
D. L.
, and
Babu
,
S. S.
,
2016
, “
Metallic Materials for 3D Printing
,”
MRS Bull.
,
41
(
10
), pp.
729
741
.
5.
Blakey-Milner
,
B.
,
Gradl
,
P.
,
Snedden
,
G.
,
Brooks
,
M.
,
Pitot
,
J.
,
Lopez
,
E.
,
Leary
,
M.
,
Berto
,
F.
, and
du Plessis
,
A.
,
2021
, “
Metal Additive Manufacturing in Aerospace: A Review
,”
Mater. Des.
,
209
, p.
110008
.
6.
Najmon
,
J. C.
,
Raeisi
,
S.
, and
Tovar
,
A.
,
2019
, “2—Review of Additive Manufacturing Technologies and Applications in the Aerospace Industry,”
Additive Manufacturing for the Aerospace Industry
,
F.
Froes
, and
R.
Boyer
, eds.,
Elsevier
,
New York
, pp.
7
31
.
7.
Kerstens
,
F.
,
Cervone
,
A.
, and
Gradl
,
P.
,
2021
, “
End to End Process Evaluation for Additively Manufactured Liquid Rocket Engine Thrust Chambers
,”
Acta Astronaut.
,
182
, pp.
454
465
.
8.
Whitt
,
A.
,
David
,
E.
, and
Grandl
,
P.
,
2023
, “The GRCop story: The Development, Production and Additive Manufacturing of NASA’s Rocket Engine Alloys,” https://www.metal-am.com/articles/the-grcop-storythe-development-production-and-additive-manufacturing-of-nasas-rocket-engine-alloys/, Accessed June 24, 2024.
9.
Mcmahon
,
M.
,
2023
, “Metal AM in the Aerospace Sector: From Early Successes to the Transformation of an Industry,” https://www.metal-am.com/articles/metal-am-in-the-aerospace-sector-from-early-successes-to-the-transformation-of-an-industry/, Accessed June 24, 2024.
10.
Seifi
,
M.
,
Gorelik
,
M.
,
Waller
,
J.
,
Hrabe
,
N.
,
Shamsaei
,
N.
,
Daniewicz
,
S.
, and
Lewandowski
,
J. J.
,
2017
, “
Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification
,”
JOM
,
69
(
3
), pp.
439
455
.
11.
Gradl
,
P. R.
,
Tinker
,
D. C.
,
Ivester
,
J.
,
Skinner
,
S. W.
,
Teasley
,
T.
, and
Bili
,
J. L.
,
2021
, “
Geometric Feature Reproducibility for Laser Powder Bed Fusion (L-PBF) Additive Manufacturing With Inconel 718
,”
Addit. Manuf.
,
47
, p.
102305
.
12.
Shahwaz
,
M.
,
Nath
,
P.
, and
Sen
,
I.
,
2022
, “
A Critical Review on the Microstructure and Mechanical Properties Correlation of Additively Manufactured Nickel-Based Superalloys
,”
J. Alloys Compd.
,
907
, p.
164530
.
13.
Chowdhury
,
S.
,
Yadaiah
,
N.
,
Prakash
,
C.
,
Ramakrishna
,
S.
,
Dixit
,
S.
,
Gupta
,
L. R.
, and
Buddhi
,
D.
,
2022
, “
Laser Powder Bed Fusion: A State-of-the-Art Review of the Technology, Materials, Properties & Defects, and Numerical Modelling
,”
J. Mater. Res. Technol.
,
20
, pp.
2109
2172
.
14.
Mostafaei
,
A.
,
Zhao
,
C.
,
He
,
Y.
,
Ghiaasiaan
,
S. R.
,
Shi
,
B.
,
Shao
,
S.
,
Shamsaei
,
N.
, et al
,
2022
, “
Defects and Anomalies in Powder Bed Fusion Metal Additive Manufacturing
,”
Curr. Opin. Solid State Mater. Sci.
,
26
(
2
), p.
100974
.
15.
Snow
,
Z.
,
Nassar
,
A. R.
, and
Reutzel
,
E. W.
,
2020
, “
Invited Review Article: Review of the Formation and Impact of Flaws in Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
36
, p.
101457
.
16.
Spears
,
T. G.
, and
Gold
,
S. A.
,
2016
, “
In-Process Sensing in Selective Laser Melting (SLM) Additive Manufacturing
,”
Integr. Mater. Manuf. Innov.
,
5
(
1
), pp.
16
40
.
17.
Gor
,
M.
,
Soni
,
H.
,
Wankhede
,
V.
,
Sahlot
,
P.
,
Grzelak
,
K.
,
Szachgluchowicz
,
I.
, and
Kluczyński
,
J.
,
2021
, “
A Critical Review on Effect of Process Parameters on Mechanical and Microstructural Properties of Powder-Bed Fusion Additive Manufacturing of SS316L
,”
Materials
,
14
(
21
), p.
6527
.
18.
Yavari
,
R.
,
Smoqi
,
Z.
,
Riensche
,
A.
,
Bevans
,
B.
,
Kobir
,
H.
,
Mendoza
,
H.
,
Song
,
H.
,
Cole
,
K.
, and
Rao
,
P.
,
2021
, “
Part-Scale Thermal Simulation of Laser Powder Bed Fusion Using Graph Theory: Effect of Thermal History on Porosity, Microstructure Evolution, and Recoater Crash
,”
Mater. Des.
,
204
, p.
109685
.
19.
Jensen
,
S. C.
,
Carroll
,
J. D.
,
Pathare
,
P. R.
,
Saiz
,
D. J.
,
Pegues
,
J. W.
,
Boyce
,
B. L.
,
Jared
,
B. H.
, and
Heiden
,
M. J.
,
2023
, “
Long-Term Process Stability in Additive Manufacturing
,”
Addit. Manuf.
,
61
, p.
103284
.
20.
Sanchez
,
S.
,
Smith
,
P.
,
Xu
,
Z.
,
Gaspard
,
G.
,
Hyde
,
C. J.
,
Wits
,
W. W.
,
Ashcroft
,
I. A.
,
Chen
,
H.
, and
Clare
,
A. T.
,
2021
, “
Powder Bed Fusion of Nickel-Based Superalloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
165
, p.
103729
.
21.
Chen
,
Z.
,
Han
,
C.
,
Gao
,
M.
,
Kandukuri
,
S. Y.
, and
Zhou
,
K.
,
2022
, “
A Review on Qualification and Certification for Metal Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
17
(
2
), pp.
382
405
.
22.
Mostafaei
,
A.
,
Ghiaasiaan
,
R.
,
Ho
,
I. T.
,
Strayer
,
S.
,
Chang
,
K.-C.
,
Shamsaei
,
N.
,
Shao
,
S.
, et al
,
2023
, “
Additive Manufacturing of Nickel-Based Superalloys: A State-of-the-Art Review on Process-Structure-Defect-Property Relationship
,”
Prog. Mater. Sci.
,
136
, p.
101108
.
23.
Haferkamp
,
L.
,
Haudenschild
,
L.
,
Spierings
,
A.
,
Wegener
,
K.
,
Riener
,
K.
,
Ziegelmeier
,
S.
, and
Leichtfried
,
G. J.
,
2021
, “
The Influence of Particle Shape, Powder Flowability, and Powder Layer Density on Part Density in Laser Powder Bed Fusion
,”
Metals
,
11
(
3
), p.
418
.
24.
Mohr
,
G.
,
Altenburg
,
S. J.
, and
Hilgenberg
,
K.
,
2023
, “
On the Limitations of Small Cubes as Test Coupons for Process Parameter Optimization in Laser Powder Bed Fusion of Metals
,”
J. Laser Appl.
,
35
(
4
), p.
042029
.
25.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
26.
Foteinopoulos
,
P.
,
Papacharalampopoulos
,
A.
, and
Stavropoulos
,
P.
,
2018
, “
On Thermal Modeling of Additive Manufacturing Processes
,”
CIRP J. Manuf. Sci. Technol.
,
20
, pp.
66
83
.
27.
Williams
,
R. J.
,
Piglione
,
A.
,
Rønneberg
,
T.
,
Jones
,
C.
,
Pham
,
M.-S.
,
Davies
,
C. M.
, and
Hooper
,
P. A.
,
2019
, “
In Situ Thermography for Laser Powder Bed Fusion: Effects of Layer Temperature on Porosity, Microstructure and Mechanical Properties
,”
Addit. Manuf.
,
30
, p.
100880
.
28.
Qin
,
Y.
,
Lou
,
S.
,
Shi
,
P.
,
Qi
,
Q.
,
Zeng
,
W.
,
Scott
,
P. J.
, and
Jiang
,
X.
,
2024
, “
Optimisation of Process Parameters for Improving Surface Quality in Laser Powder Bed Fusion
,”
Int. J. Adv. Manuf. Technol.
,
130
(
5
), pp.
2833
2845
.
29.
Du
,
B.
,
Liu
,
Q.
,
He
,
M.
,
Yi
,
J.
,
He
,
J.
, and
Wang
,
S.
,
2023
, “
The Heterogeneous Microstructure in Laser Powder Bed Fabricated Inconel 718 Pillar and Its Influence on Mechanical Properties
,”
Mater. Sci. Eng. A
,
872
, p.
144953
.
30.
Riensche
,
A. R.
,
Bevans
,
B. D.
,
King
,
G.
,
Krishnan
,
A.
,
Cole
,
K. D.
, and
Rao
,
P.
,
2024
, “
Predicting Meltpool Depth and Primary Dendritic Arm Spacing in Laser Powder Bed Fusion Additive Manufacturing Using Physics-Based Machine Learning
,”
Mater. Des.
,
237
, p.
112540
.
31.
Mayne
,
D. Q.
,
2014
, “
Model Predictive Control: Recent Developments and Future Promise
,”
Automatica
,
50
(
12
), pp.
2967
2986
.
32.
Schwenzer
,
M.
,
Ay
,
M.
,
Bergs
,
T.
, and
Abel
,
D.
,
2021
, “
Review on Model Predictive Control: An Engineering Perspective
,”
Int. J. Adv. Manuf. Technol.
,
117
(
5–6
), pp.
1327
1349
.
33.
Cole
,
K. D.
,
Riensche
,
A.
, and
Rao
,
P. K.
,
2022
, “
Discrete Green’s Functions and Spectral Graph Theory for Computationally Efficient Thermal Modeling
,”
Int. J. Heat Mass Transfer
,
183
, p.
122112
.
34.
Druzgalski
,
C. L.
,
Ashby
,
A.
,
Guss
,
G.
,
King
,
W. E.
,
Roehling
,
T. T.
, and
Matthews
,
M. J.
,
2020
, “
Process Optimization of Complex Geometries Using Feed Forward Control for Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
34
, p.
101169
.
35.
King
,
W.
,
2023
, “
Process Control for Defect Mitigation in Laser Powder Bed Fusion Additive Manufacturing
,”
SAE Research Report EPR2023011
.
36.
Yavari
,
R.
,
Riensche
,
A.
,
Tekerek
,
E.
,
Jacquemetton
,
L.
,
Halliday
,
H.
,
Vandever
,
M.
,
Tenequer
,
A.
, et al
,
2021
, “
Digitally Twinned Additive Manufacturing: Detecting Flaws in Laser Powder Bed Fusion by Combining Thermal Simulations With In-Situ Meltpool Sensor Data
,”
Mater. Des.
,
211
, p.
110167
.
37.
Smoqi
,
Z.
,
Gaikwad
,
A.
,
Bevans
,
B.
,
Kobir
,
M. H.
,
Craig
,
J.
,
Abul-Haj
,
A.
,
Peralta
,
A.
, and
Rao
,
P.
,
2022
, “
Monitoring and Prediction of Porosity in Laser Powder Bed Fusion Using Physics-Informed Meltpool Signatures and Machine Learning
,”
J. Mater. Process. Technol.
,
304
, p.
117550
.
38.
Bandyopadhyay
,
A.
, and
Traxel
,
K. D.
,
2018
, “
Invited Review Article: Metal-Additive Manufacturing—Modeling Strategies for Application-Optimized Designs
,”
Addit. Manuf.
,
22
, pp.
758
774
.
39.
Luo
,
Z.
, and
Zhao
,
Y.
,
2018
, “
A Survey of Finite Element Analysis of Temperature and Thermal Stress Fields in Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
318
332
.
40.
Sarkar
,
D.
,
Kapil
,
A.
, and
Sharma
,
A.
,
2024
, “
Advances in Computational Modeling for Laser Powder Bed Fusion Additive Manufacturing: A Comprehensive Review of Finite Element Techniques and Strategies
,”
Addit. Manuf.
,
85
, p.
104157
.
41.
Riensche
,
A.
,
Bevans
,
B. D.
,
Smoqi
,
Z.
,
Yavari
,
R.
,
Krishnan
,
A.
,
Gilligan
,
J.
,
Piercy
,
N.
,
Cole
,
K.
, and
Rao
,
P.
,
2022
, “
Feedforward Control of Thermal History in Laser Powder Bed Fusion: Toward Physics-Based Optimization of Processing Parameters
,”
Mater. Des.
,
224
, p.
111351
.
42.
Peter
,
N.
,
Pitts
,
Z.
,
Thompson
,
S.
, and
Saharan
,
A.
,
2020
, “
Benchmarking Build Simulation Software for Laser Powder Bed Fusion of Metals
,”
Addit. Manuf.
,
36
, p.
101531
.
43.
Bevans
,
B.
,
Barrett
,
C.
,
Spears
,
T.
,
Gaikwad
,
A.
,
Riensche
,
A.
,
Smoqi
,
Z.
,
Halliday
,
H.
, and
Rao
,
P.
,
2023
, “
Heterogeneous Sensor Data Fusion for Multiscale, Shape Agnostic Flaw Detection in Laser Powder Bed Fusion Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
18
(
1
), p.
e2196266
.
44.
Imani
,
F.
,
Gaikwad
,
A.
,
Montazeri
,
M.
,
Rao
,
P.
,
Yang
,
H.
, and
Reutzel
,
E.
,
2018
, “
Process Mapping and In-Process Monitoring of Porosity in Laser Powder Bed Fusion Using Layerwise Optical Imaging
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101009
.
45.
Riensche
,
A.
,
Bevans
,
B.
,
Carrington
,
A.
,
Deshmukh
,
K.
,
Shephard
,
K.
,
Sions
,
J.
,
Synder
,
K.
,
Plotnikov
,
Y.
,
Cole
,
K.
, and
Rao
,
P.
,
2025
, “
DynamicPrint: A Physics-Guided Feedforward Model Predictive Process Control Approach for Defect Mitigation in Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
97
, p.
104592
.
46.
Fang
,
Q.
,
Xiong
,
G.
,
Zhou
,
M.
,
Tamir
,
T. S.
,
Yan
,
C. B.
,
Wu
,
H.
,
Shen
,
Z.
, and
Wang
,
F. Y.
,
2024
, “
Process Monitoring, Diagnosis and Control of Additive Manufacturing
,”
IEEE Trans. Autom. Sci. Eng.
,
21
(
1
), pp.
1041
1067
.
47.
Bolton
,
W.
,
2002
, “1—Control Systems,”
Control Systems
,
W.
Bolton
, ed.,
Newnes
,
Oxford
, pp.
1
36
.
48.
Dodds
,
S. J.
,
2015
,
Feedback Control
, Vol.
10
,
Springer
,
London
, pp.
978
971
.
49.
Wang
,
R.
,
Standfield
,
B.
,
Dou
,
C.
,
Law
,
A. C.
, and
Kong
,
Z. J.
,
2023
, “
Real-Time Process Monitoring and Closed-Loop Control on Laser Power via a Customized Laser Powder Bed Fusion Platform
,”
Addit. Manuf.
,
66
, p.
103449
.
50.
Renken
,
V.
,
Lübbert
,
L.
,
Blom
,
H.
,
von Freyberg
,
A.
, and
Fischer
,
A.
,
2018
, “
Model Assisted Closed-Loop Control Strategy for Selective Laser Melting
,”
Procedia CIRP
,
74
, pp.
659
663
.
51.
Vasileska
,
E.
,
Demir
,
A. G.
,
Colosimo
,
B. M.
, and
Previtali
,
B.
,
2022
, “
A Novel Paradigm for Feedback Control in LPBF: Layer-Wise Correction for Overhang Structures
,”
Adv. Manuf.
,
10
(
2
), pp.
326
344
.
52.
Kavas
,
B.
,
Balta
,
E. C.
,
Tucker
,
M.
,
Rupenyan
,
A.
,
Lygeros
,
J.
, and
Bambach
,
M.
,
2023
, “
Layer-to-Layer Closed-Loop Feedback Control Application for Inter-Layer Temperature Stabilization in Laser Powder Bed Fusion
,”
Addit. Manuf.
,
78
, p.
103847
.
53.
Adnan
,
M.
,
Yang
,
H. C.
,
Kuo
,
T. H.
,
Cheng
,
F. T.
, and
Tran
,
H. C.
,
2021
, “
MPI-Based System 2 for Determining LPBF Process Control Thresholds and Parameters
,”
IEEE Robot. Autom. Lett.
,
6
(
4
), pp.
6553
6560
.
54.
Mahmoud
,
D.
,
Magolon
,
M.
,
Boer
,
J.
,
Elbestawi
,
M. A.
, and
Mohammadi
,
M. G.
,
2021
, “
Applications of Machine Learning in Process Monitoring and Controls of L-PBF Additive Manufacturing A Review
,”
Appl. Sci.
,
11
(
24
), p.
11910
.
55.
McCann
,
R.
,
Obeidi
,
M. A.
,
Hughes
,
C.
,
McCarthy
,
É
,
Egan
,
D. S.
,
Vijayaraghavan
,
R. K.
,
Joshi
,
A. M.
, et al
,
2021
, “
In-Situ Sensing, Process Monitoring and Machine Control in Laser Powder Bed Fusion: A Review
,”
Addit. Manuf.
,
45
, p.
102058
.
56.
Yagmur
,
A.
,
Paakkonen
,
I.
, and
Miles
,
A.
,
2023
, “The Hitchhiker’s Guide to Smart Fusion,” https://www.eos.info/en-us/innovations/smart-fusion, Accessed July 25, 2024.
57.
Yeung
,
H.
,
Lane
,
B.
, and
Fox
,
J.
,
2019
, “
Part Geometry and Conduction-Based Laser Power Control for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
30
, p.
100844
.
58.
He
,
C.
,
Ramani
,
K. S.
, and
Okwudire
,
C. E.
,
2023
, “
An Intelligent Scanning Strategy (SmartScan) for Improved Part Quality in Multi-Laser PBF Additive Manufacturing
,”
Addit. Manuf.
,
64
, p.
103427
.
59.
Ramani
,
K. S.
,
He
,
C.
,
Tsai
,
Y.-L.
,
Okwudire
,
C. E.
, and
Malekipour
,
E.
,
2022
, “
SmartScan: An Intelligent Scanning Approach for Uniform Thermal Distribution, Reduced Residual Stresses and Deformations in PBF Additive Manufacturing
,”
Addit. Manuf.
,
52
, p.
102643
.
60.
Wang
,
Q.
,
Michaleris
,
P.
,
Nassar
,
A. R.
,
Irwin
,
J. E.
,
Ren
,
Y.
, and
Stutzman
,
C. B.
,
2020
, “
Model-Based Feedforward Control of Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
31
, p.
100985
.
61.
Ogoke
,
F.
, and
Farimani
,
A. B.
,
2021
, “
Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning
,”
Addit. Manuf.
,
46
, p.
102033
.
62.
Kusano
,
M.
, and
Watanabe
,
M.
,
2024
, “
Controlling Heat Accumulation Through Changing Time per Layer in Laser Powder Bed Fusion of Nickel-Based Superalloy
,”
J. Manuf. Processes
,
131
, pp.
187
198
.
63.
Deshmukh
,
K.
,
Riensche
,
A.
,
Bevans
,
B.
,
Lane
,
R. J.
,
Snyder
,
K.
,
Halliday
,
H.
,
Williams
,
C. B.
,
Mirzaeifar
,
R.
, and
Rao
,
P.
,
2024
, “
Effect of Processing Parameters and Thermal History on Microstructure Evolution and Functional Properties in Laser Powder Bed Fusion of 316L
,”
Mater. Des.
,
244
, p.
113136
.
64.
Reza Yavari
,
M.
,
Williams
,
R. J.
,
Cole
,
K. D.
,
Hooper
,
P. A.
, and
Rao
,
P.
,
2020
, “
Thermal Modeling in Metal Additive Manufacturing Using Graph Theory: Experimental Validation With Laser Powder Bed Fusion Using In Situ Infrared Thermography Data
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121005
.
65.
Charles
,
A.
,
Bayat
,
M.
,
Elkaseer
,
A.
,
Thijs
,
L.
,
Hattel
,
J. H.
, and
Scholz
,
S.
,
2022
, “
Elucidation of Dross Formation in Laser Powder Bed Fusion at Down-Facing Surfaces: Phenomenon-Oriented Multiphysics Simulation and Experimental Validation
,”
Addit. Manuf.
,
50
, p.
102551
.
66.
Charles
,
A.
,
Elkaseer
,
A.
,
Paggi
,
U.
,
Thijs
,
L.
,
Hagenmeyer
,
V.
, and
Scholz
,
S.
,
2021
, “
Down-Facing Surfaces in Laser Powder Bed Fusion of Ti6Al4V: Effect of Dross Formation on Dimensional Accuracy and Surface Texture
,”
Addit. Manuf.
,
46
, p.
102148
.
67.
Krakhmalev
,
P.
,
Fredriksson
,
G.
,
Svensson
,
K.
,
Yadroitsev
,
I.
,
Yadroitsava
,
I.
,
Thuvander
,
M.
, and
Peng
,
R.
,
2018
, “
Microstructure, Solidification Texture, and Thermal Stability of 316 L Stainless Steel Manufactured by Laser Powder Bed Fusion
,”
Metals
,
8
(
8
), p.
643
.
68.
Zhang
,
H.
,
Li
,
C.
,
Guo
,
Q.
,
Ma
,
Z.
,
Li
,
H.
, and
Liu
,
Y.
,
2019
, “
Improving Creep Resistance of Nickel-Based Superalloy Inconel 718 by Tailoring Gamma Double Prime Variants
,”
Scr. Mater.
,
164
, pp.
66
70
.
69.
Watring
,
D. S.
,
Benzing
,
J. T.
,
Hrabe
,
N.
, and
Spear
,
A. D.
,
2020
, “
Effects of Laser-Energy Density and Build Orientation on the Structure–Property Relationships in As-Built Inconel 718 Manufactured by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
36
, p.
101425
.
70.
Schoinochoritis
,
B.
,
Chantzis
,
D.
, and
Salonitis
,
K.
,
2015
, “
Simulation of Metallic Powder Bed Additive Manufacturing Processes With the Finite Element Method: A Critical Review
,”
Proc. Inst. Mech. Eng. B
,
231
(
1
), pp.
96
117
.
71.
Yavari
,
M. R.
,
Cole
,
K. D.
, and
Rao
,
P.
,
2019
, “
Thermal Modeling in Metal Additive Manufacturing Using Graph Theory
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071007
.
72.
Cole
,
K. D.
,
Yavari
,
M. R.
, and
Rao
,
P. K.
,
2020
, “
Computational Heat Transfer with Spectral Graph Theory: Quantitative Verification
,”
Int. J. Therm. Sci.
,
153
, p.
106383
.
73.
Ye
,
J.
,
Khairallah
,
S. A.
,
Rubenchik
,
A. M.
,
Crumb
,
M. F.
,
Guss
,
G.
,
Belak
,
J.
, and
Matthews
,
M. J.
,
2019
, “
Energy Coupling Mechanisms and Scaling Behavior Associated With Laser Powder Bed Fusion Additive Manufacturing
,”
Adv. Eng. Mater.
,
21
(
7
), p.
1900185
.
74.
Zhai
,
W.
,
Wu
,
N.
, and
Zhou
,
W.
,
2022
, “
Effect of Interpass Temperature on Wire Arc Additive Manufacturing Using High-Strength Metal-Cored Wire
,”
Metals
,
12
(
2
), p.
212
.
75.
Wang
,
Q.
,
Michaleris
,
P.
,
Pantano
,
M.
,
Li
,
C.
,
Ren
,
Y.
, and
Nassar
,
A. R.
,
2022
, “
Part-Scale Thermal Evolution and Post-Process Distortion of Inconel-718 Builds Fabricated by Laser Powder Bed Fusion
,”
J. Manuf. Processes
,
81
, pp.
865
880
.
76.
Kobir
,
M. H.
,
Yavari
,
R.
,
Riensche
,
A. R.
,
Bevans
,
B. D.
,
Castro
,
L.
,
Cole
,
K. D.
, and
Rao
,
P.
,
2023
, “
Prediction of Recoater Crash in Laser Powder Bed Fusion Additive Manufacturing Using Graph Theory Thermomechanical Modeling
,”
Prog. Addit. Manuf.
,
8
(
3
), pp.
355
380
.
77.
Vecchiato
,
F. L.
,
de Winton
,
H.
,
Hooper
,
P. A.
, and
Wenman
,
M. R.
,
2020
, “
Melt Pool Microstructure and Morphology From Single Exposures in Laser Powder Bed Fusion of 316L Stainless Steel
,”
Addit. Manuf.
,
36
, p.
101401
.
You do not currently have access to this content.