Abstract

Polyether ether ketone (PEEK) has emerged as a popular choice for medical implants, with significant research focusing on developing porous PEEK structures to improve cell adhesion and ingrowth. A novel fabrication process for porous PEEK implants was recently introduced using immiscible polymer blending with polyether sulfone (PES) as a sacrificial phase. In this study, a computational phase separation model for PEEK/PES immiscible blends is developed by integrating the phase-field theory and thermo-fluid dynamics. Physical properties of the polymers were incorporated, and both 2D and 3D simulations were conducted. The 3D model was validated against experimental data, providing a quantitative understanding of the PEEK/PES phase separation process. By comparing with experimental results, the model enables the estimation of material properties that are challenging to measure and offers critical insights for optimizing the PEEK implant fabrication process.

References

1.
Lechner
,
J.
,
Noumbissi
,
S.
, and
von Baehr
,
V.
,
2018
, “
Titanium Implants and Silent Inflammation in Jawbone—A Critical Interplay of Dissolved Titanium Particles and Cytokines TNF-α and RANTES/CCL5 on Overall Health?
,”
EPMA J.
,
9
(
3
), pp.
331
343
.
2.
Nemoto
,
O.
,
Asazuma
,
T.
,
Yato
,
Y.
,
Imabayashi
,
H.
,
Yasuoka
,
H.
, and
Fujikawa
,
A.
,
2014
, “
Comparison of Fusion Rates Following Transforaminal Lumbar Interbody Fusion Using Polyetheretherketone Cages or Titanium Cages With Transpedicular Instrumentation
,”
Eur. Spine J.
,
23
(
10
), pp.
2150
2155
.
3.
Wagner
,
A.
,
Sachse
,
A.
,
Keller
,
M.
,
Aurich
,
M.
,
Wetzel
,
W.
,
Hortschansky
,
P.
,
Schmuck
,
K.
, et al
,
2006
, “
Qualitative Evaluation of Titanium Implant Integration Into Bone by Diffraction Enhanced Imaging
,”
Phys. Med. Biol.
,
51
(
5
), pp.
1313
1324
.
4.
Grémare
,
A.
,
Guduric
,
V.
,
Bareille
,
R.
,
Heroguez
,
V.
,
Latour
,
S.
,
L'heureux
,
N.
,
Fricain
,
J. C.
,
Catros
,
S.
, and
Le Nihouannen
,
D.
,
2018
, “
Characterization of Printed PLA Scaffolds for Bone Tissue Engineering
,”
J. Biomed. Mater. Res. Part A
,
106
(
4
), pp.
887
894
.
5.
Wang
,
X.
,
Li
,
W.
, and
Kumar
,
V.
,
2006
, “
A Method for Solvent-Free Fabrication of Porous Polymer Using Solid-State Foaming and Ultrasound for Tissue Engineering Applications
,”
Biomaterials
,
27
(
9
), pp.
1924
1929
.
6.
Chen
,
R.
,
Chang
,
R. C.
,
Tai
,
B.
,
Huang
,
Y.
,
Ozdoganlar
,
B.
,
Li
,
W.
, and
Shih
,
A.
,
2020
, “
Biomedical Manufacturing: A Review of the Emerging Research and Applications
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110807
.
7.
Wang
,
W.
,
Zhang
,
B.
,
Li
,
M.
,
Li
,
J.
,
Zhang
,
C.
,
Han
,
Y.
,
Wang
,
L.
, et al
,
2021
, “
3D Printing of PLA/n-HA Composite Scaffolds With Customized Mechanical Properties and Biological Functions for Bone Tissue Engineering
,”
Compos. Part B: Eng.
,
224
, p.
109192
.
8.
Salerno
,
A.
,
Fernández-Gutiérrez
,
M.
,
San Román del Barrio
,
J.
, and
Domingo
,
C.
,
2015
, “
Bio-Safe Fabrication of PLA Scaffolds for Bone Tissue Engineering by Combining Phase Separation, Porogen Leaching and scCO2 Drying
,”
J. Supercrit. Fluids
,
97
, pp.
238
246
.
9.
Wang
,
X.
,
Kumar
,
V.
, and
Li
,
W.
,
2012
, “
Development of Crystallization in PLA During Solid-State Foaming Process Using Sub-Critical CO2
,”
Cell. Polym.
,
31
(
1
), pp.
1
18
.
10.
Schwitalla
,
A.
, and
Müller
,
W.-D.
,
2013
, “
PEEK Dental Implants: A Review of the Literature
,”
J. Oral Implantol.
,
39
(
6
), pp.
743
749
.
11.
Walsh
,
W. R.
,
Bertollo
,
N.
,
Christou
,
C.
,
Schaffner
,
D.
, and
Mobbs
,
R. J.
,
2015
, “
Plasma-Sprayed Titanium Coating to Polyetheretherketone Improves the Bone-Implant Interface
,”
Spine J.
,
15
(
5
), pp.
1041
1049
.
12.
Torstrick
,
F. B.
,
Evans
,
N. T.
,
Stevens
,
H. Y.
,
Gall
,
K.
, and
Guldberg
,
R. E.
,
2016
, “
Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK?
,”
Clin. Orthop. Relat. Res.
,
474
(
11
), pp.
2373
2383
.
13.
Shimizu
,
T.
,
Fujibayashi
,
S.
,
Yamaguchi
,
S.
,
Yamamoto
,
K.
,
Otsuki
,
B.
,
Takemoto
,
M.
,
Tsukanaka
,
M.
,
Kizuki
,
T.
,
Matsushita
,
T.
, and
Kokubo
,
T.
,
2016
, “
Bioactivity of Sol–Gel-Derived TiO2 Coating on Polyetheretherketone: In Vitro and In Vivo Studies
,”
Acta Biomater.
,
35
, pp.
305
317
.
14.
Zhu
,
H.
,
Morquecho
,
E. V.
, and
Li
,
W.
,
2023
, “
Solid-State Foaming of Poly (Ether-Ether-Ketone)/Hydroxyapatite Composites
,”
J. Cellular Plast.
,
59
(
5–6
), pp.
379
393
.
15.
Zhu
,
T.
,
Cui
,
Y.
,
Zhang
,
M.
,
Zhao
,
D.
,
Liu
,
G.
, and
Ding
,
J.
,
2020
, “
Engineered Three-Dimensional Scaffolds for Enhanced Bone Regeneration in Osteonecrosis
,”
Bioactive Mater.
,
5
(
3
), pp.
584
601
.
16.
Abbasi
,
N.
,
Hamlet
,
S.
,
Love
,
R. M.
, and
Nguyen
,
N.-T.
,
2020
, “
Porous Scaffolds for Bone Regeneration
,”
J. Sci.: Adv. Mater. Devices
,
5
(
1
), pp.
1
9
.
17.
Zhu
,
H.
,
Y. Wang
,
V.
, and
Li
,
W.
,
2024
, “
Fabricating Biomimetic Porous PEEK Scaffolds for Bone Implants
,”
Int. J. Polym. Mater. Polym. Biomater.
,
74
(
1
), pp.
30
38
.
18.
Zhu
,
H.
,
2024
, “A 3D Printing-Based Hybrid Manufacturing Method for High-Strength Polymeric Medical Implant Fabrication,” NAMRC 52, 2024, Knoxville, TN.
19.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
,
1958
, “
Free Energy of a Nonuniform System. I. Interfacial Free Energy
,”
J. Chem. Phys.
,
28
(
2
), pp.
258
267
.
20.
Novick-Cohen
,
A.
,
2008
, “
The Cahn–Hilliard Equation
,”
Handbook Diff. Eq.: Evolut. Eq.
,
4
, pp.
201
228
.
21.
Yue
,
P.
,
Zhou
,
C.
,
Feng
,
J. J.
,
Ollivier-Gooch
,
C. F.
, and
Hu
,
H. H.
,
2006
, “
Phase-Field Simulations of Interfacial Dynamics in Viscoelastic Fluids Using Finite Elements With Adaptive Meshing
,”
J. Comput. Phys.
,
219
(
1
), pp.
47
67
.
22.
Shen
,
H.
,
Yao
,
D.
,
Zhang
,
W.
, and
Ye
,
Q.
,
2020
, “
Modeling and Simulation of the Process for the Generation of Gradient Porous Structures From Immiscible Polymer Blends
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031001
.
23.
López-Barrón
,
C. R.
, and
Macosko
,
C. W.
,
2010
, “
A New Model for the Coarsening of Continuous Morphologies
,”
Soft Matter
,
6
(
12
), pp.
2637
2647
.
24.
Ma
,
L.
,
Jiang
,
W.
, and
Li
,
W.
,
2014
, “
Solvent-Free Fabrication of Tissue Engineering Scaffolds With Immiscible Polymer Blends
,”
Int. J. Polym. Mater. Polym. Biomater.
,
63
(
10
), pp.
510
517
.
25.
Zhou
,
C.
,
Ma
,
L.
,
Li
,
W.
, and
Yao
,
D.
,
2011
, “
Fabrication of Tissue Engineering Scaffolds Through Solid-State Foaming of Immiscible Polymer Blends
,”
Biofabrication
,
3
(
4
), p.
045003
.
26.
Heister
,
T.
,
Dannberg
,
J.
,
Gassmöller
,
R.
, and
Bangerth
,
W.
,
2017
, “
High Accuracy Mantle Convection Simulation Through Modern Numerical Methods–II: Realistic Models and Problems
,”
Geophys. J. Int.
,
210
(
2
), pp.
833
851
.
27.
Kühl
,
N.
,
Hinze
,
M.
, and
Rung
,
T.
,
2022
, “
Cahn-Hilliard Navier-Stokes Simulations for Marine Free-Surface Flows
,”
Exp. Comput. Multiphase flow
,
4
(
3
), pp.
274
290
.
28.
FEniCS Open-Source Software, FEniCS. https://fenicsproject.org/.
29.
Technical Datasheets
, Victrex, https://www.victrex.com/en/datasheets, Accessed February 15, 2022.
31.
de Almeida
,
O.
,
Bessard
,
E.
, and
Bernhart
,
G.
,
2012
, “
Influence of Processing Parameters and Semi-Finished Product on Consolidation of Carbon/Peek Laminates
,”
Proceedings of 15th European Conference on Composite Materials ECCM15, ECCM
,
Venice, Italy
,
June 24–28
, p.
8
.
32.
König
,
B.
,
Ronsin
,
O. J.
, and
Harting
,
J.
,
2021
, “
Two-Dimensional Cahn–Hilliard Simulations for Coarsening Kinetics of Spinodal Decomposition in Binary Mixtures
,”
Phys. Chem. Chem. Phys.
,
23
(
43
), pp.
24823
24833
.
33.
Wu
,
S.
,
1971
, “
Calculation of Interfacial Tension in Polymer Systems
,”
Journal of Polymer Science Part C: Polymer Symposia
,
34
(
1
), pp.
19
30
.
34.
Elemans
,
P.
,
Janssen
,
J.
, and
Meijer
,
H.
,
1990
, “
The Measurement of Interfacial Tension in Polymer/Polymer Systems: The Breaking Thread Method
,”
J. Rheol.
,
34
(
8
), pp.
1311
1325
.
35.
Roe
,
R.-J.
,
1969
, “
Interfacial Tension Between Polymer Liquids
,”
J. Colloid Interface Sci.
,
31
(
2
), pp.
228
235
.
36.
Turek
,
D. E.
, and
Simon
,
G. P.
,
1992
, “
Properties of a Semi-Crystalline and an Amorphous Thermotropic Liquid Crystalline Polymer
,”
Polym. Int.
,
27
(
2
), pp.
165
175
.
37.
Wang
,
J.-S.
, and
Porter
,
R. S.
,
1995
, “
On the Viscosity-Temperature Behavior of Polymer Melts
,”
Rheol. Acta
,
34
(
5
), pp.
496
503
.
You do not currently have access to this content.