Abstract

Resistance element welding was performed using A6061 aluminum alloy as the upper plate and AZ31B magnesium alloy as the lower plate. Rivets with leg diameters of 4 mm, 6 mm, 8 mm, and 10 mm were utilized as the element. The impact of welding current and welding time on the tensile shear load of the joint was investigated, in addition to conducting an analysis of the microstructure of the joint. The tensile shear load of the joint reached the maximum value of approximately 5.19 kN when a rivet with a leg diameter of 10 mm was used under the conditions of a welding current of 25 kA and a welding time of 160 ms. The results reveal that a reaction layer formed at the interface between the magnesium alloy rivet leg and the aluminum alloy upper plate and it consistently comprised a single row of Al12Mg17 grains elongated parallel to the interface plan irrespective of whether the magnesium alloy was in a solid or liquid state during welding.

References

1.
Manladan
,
S. M.
,
Yusof
,
F.
,
Ramesh
,
S.
, and
Fadzil
,
M.
,
2016
, “
A Review on Resistance Spot Welding of Magnesium Alloys
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
1805
1825
.
2.
Amirhossein
,
S.
, and
Naveed
,
I.
,
2022
, “
A Review on Dissimilar Laser Welding of Steel-Copper, Steel-Aluminum, Aluminum-Copper, and Steel-Nickel for Electric Vehicle Battery Manufacturing
,”
Opt. Laser Technol.
,
146
, p.
107595
.
3.
Yongbing
,
L.
,
Yunwu
,
M.
,
Ming
,
L.
,
Guotao
,
Z.
,
Qingxin
,
Z.
,
Lin
,
Q.
, and
Lin
,
D.
,
2020
, “
Advances in Spot Joining Technologies of Lightweight Thin-Walled Structures
,”
J. Mech. Eng.
,
56
(
6
), pp.
125
228
.
4.
Martinsen
,
K.
,
Hu
,
S. J.
, and
Carlson
,
B. E.
,
2015
, “
Joining of Dissimilar Materials
,”
CIRP Ann. Manuf. Technol.
,
64
(
2
), pp.
679
699
.
5.
Wei
,
L.
,
Chang
,
J.-H.
,
Wen
,
B.-F.
, and
Cao
,
R.
,
2022
, “
Joining of Dissimilar Metals Between Magnesium AZ31B and Aluminum A6061-T6 Using Galvanized Steel as a Transition Joining Layer
,”
J. Iron. Steel Res. Int.
,
29
(
4
), pp.
677
686
.
6.
Li
,
W.
,
Wang
,
Y.
,
Prangnell
,
P.
, and
Robson
,
J.
,
2015
, “
Modeling of Intermetallic Compounds Growth Between Dissimilar Metals
,”
Metall. Mater. Trans. A
,
46
(
9
), pp.
4106
4114
.
7.
Liu
,
L.
,
Ren
,
D.
, and
Liu
,
F.
,
2014
, “
A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys
,”
Materials
,
7
(
5
), pp.
3735
3757
.
8.
Prasad
,
B. L.
,
Neelaiah
,
G.
,
Krishna
,
M. G.
,
Ramana
,
S. V. V.
,
Prakash
,
K. S.
,
Sarika
,
G.
,
Reddy
,
G. P. K.
,
Dumpala
,
R.
, and
Sunil
,
B. R.
,
2018
, “
Joining of AZ91 Mg Alloy and Al6063 Alloy Sheets by Friction Stir Welding
,”
J. Magnesium Alloys
,
6
(
1
), pp.
71
76
.
9.
Lin
,
Y.-J.
, and
Lin
,
C.-S.
,
2021
, “
Galvanic Corrosion Behavior of Friction Stir Welded AZ31B Magnesium Alloy and 6N01 Aluminum Alloy Dissimilar Joints
,”
Corros. Sci.
,
180
, p.
109203
.
10.
Mihara-Narita
,
M.
,
Asai
,
K.
,
Sato
,
H.
,
Watanabe
,
Y.
,
Mori
,
H.
,
Saito
,
N.
, and
Chino
,
Y.
,
2022
, “
Interfacial Microstructure and Mechanical Properties of Explosively Welded Mg/Al Alloy Plates
,”
J. Mater. Eng. Perform.
,
31
(
9
), pp.
7039
7048
.
11.
Acarer
,
M.
,
Demir
,
B.
,
Dikici
,
B.
, and
Salur
,
E.
,
2022
, “
Microstructure, Mechanical Properties, and Corrosion Resistance of an Explosively Welded Mg–Al Composite
,”
J. Magnesium Alloys
,
10
(
4
), pp.
1086
1095
.
12.
Su
,
Z.
,
Zhu
,
Z.
,
Zhang
,
Y.
, and
Zhang
,
H.
,
2021
, “
Analysis of Microstructure and Mechanical Properties of AZ31B Magnesium Alloy/AA6061 Aluminum Alloy Welded Joint by Ultrasonic Welding
,”
Mater. Res.
,
24
(
2
), p.
e20200488
.
13.
Robson
,
J.
,
Panteli
,
A.
, and
Prangnell
,
P. B.
,
2012
, “
Modelling Intermetallic Phase Formation in Dissimilar Metal Ultrasonic Welding of Aluminium and Magnesium Alloys
,”
Sci. Technol. Weld. Joining
,
17
(
6
), pp.
447
453
.
14.
Pouranvari
,
M.
, and
Marashi
,
S. P. H.
,
2013
, “
Critical Review of Automotive Steels Spot Welding: Process, Structure and Properties
,”
Sci. Technol. Weld. Joining
,
18
(
5
), pp.
361
403
.
15.
Sun
,
M.
,
Niknejad
,
S. T.
,
Zhang
,
G.
,
Lee
,
M. K.
,
Wu
,
L.
, and
Zhou
,
Y.
,
2015
, “
Microstructure and Mechanical Properties of Resistance Spot Welded AZ31/AA5754 Using a Nickel Interlayer
,”
Mater. Des.
,
87
, pp.
905
913
.
16.
Penner
,
P.
,
Liu
,
L.
,
Gerlich
,
A.
, and
Zhou
,
Y.
,
2013
, “
Feasibility Study of Resistance Spot Welding of Dissimilar Al/Mg Combinations With Ni Based Interlayers
,”
Sci. Technol. Weld. Joining
,
18
(
7
), pp.
541
550
.
17.
Sun
,
M.
,
Niknejad
,
S. T.
,
Gao
,
H.
,
Wu
,
L.
, and
Zhou
,
Y.
,
2016
, “
Mechanical Properties of Dissimilar Resistance Spot Welds of Aluminum to Magnesium With Sn-Coated Steel Interlayer
,”
Mater. Des.
,
91
, pp.
331
339
.
18.
Zhang
,
Y.
,
Luo
,
Z.
,
Li
,
Y.
,
Liu
,
Z. M.
, and
Huang
,
Z. Y.
,
2015
, “
Microstructure Characterization and Tensile Properties of Mg/Al Dissimilar Joints Manufactured by Thermo-Compensated Resistance Spot Welding With Zn Interlayer
,”
Mater. Des.
,
75
, pp.
166
173
.
19.
Meschut
,
G.
,
Janzen
,
V.
, and
Olfermann
,
T.
,
2014
, “
Innovative and Highly Productive Joining Technologies for Multi-Material Lightweight Car Body Structures
,”
J. Mater. Eng. Perform.
,
23
(
5
), pp.
1515
1523
.
20.
Qiu
,
R.
,
Zhao
,
P.
,
Zhao
,
J.
,
Shi
,
H.
, and
Yu
,
H.
,
2023
, “
Resistance Element Welding of Aluminium Alloy and Steel Using an Element of Aluminium
,”
Sci. Technol. Weld. Joining
,
28
(
8
), pp.
766
774
.
21.
Zheng
,
B.
,
Li
,
Y.
,
Zhang
,
D.
,
Yang
,
Y.
,
Wang
,
S.
,
Manladan
,
S. M.
, and
Luo
,
Z.
,
2022
, “
Microstructure and Mechanical Properties of Al/Mg Resistance Element Welded Joints
,”
Int. J. Adv. Manuf. Technol.
,
120
(
9
), pp.
6315
6323
.
22.
Wang
,
N.
,
Li
,
J.
,
Wu
,
W.
,
Bao
,
X.
,
Ren
,
K.
,
Zhao
,
J.
,
Yao
,
H.
, and
Qiu
,
R.
,
2024
, “
Performance and Interfacial Microstructure of Al/Steel Joints Welded by Resistance Element Welding
,”
Materials
,
17
(
4
), p.
903
.
23.
Li
,
D.
,
Wang
,
X.
, and
Zhao
,
Z.
,
2022
, “
Grain Orientation and Texture Analysis of 6082 Aluminum Alloy Friction Plug Welded Joints
,”
J. Mater. Res. Technol.
,
18
, pp.
1763
1771
.
24.
Beygi
,
R.
,
Pouraliakbar
,
H.
,
Torabi
,
K.
,
Eisaabadi
,
B. G.
,
Fallah
,
V.
,
Kim
,
S. K.
,
Shi
,
R.
, and
Silva da
,
L. F. M.
,
2021
, “
The Inhibitory Effect of Stir Zone Liquefaction and Eutectic-Phase Formation on the Growth of γ/β Intermetallics During Dissimilar FSW of Al/Mg Alloys
,”
J. Manuf. Processes
,
70
, pp.
152
162
.
25.
Sanamar
,
S.
,
Brokmeier
,
H. G.
, and
Schell
,
N.
,
2022
, “
Formation of the Intermetallic Phases Al12Mg17 and Al3Mg2 During Heating of Elemental Al-Mg Composites Studied by High-Energy X-Ray Diffraction
,”
J. Alloys Compd.
,
911
, p.
165114
.
26.
Sanamar
,
S.
,
Brokmeier
,
H. G.
, and
Schell
,
N.
,
2020
, “
Phase Evolution of Al–Mg Metal Matrix Composites During Low Temperature Annealing at 200 °C and 250 °C
,”
Intermetallics
,
124
, p.
106862
.
27.
Beygi
,
R.
,
Galvão
,
I.
,
Akhavan-Safar
,
A.
,
Pouraliakbar
,
H.
,
Fallah
,
V.
, and
Silva da
,
L. F. M.
,
2023
, “
Effect of Alloying Elements on Intermetallic Formation During Friction Stir Welding of Dissimilar Metals: A Critical Review on Aluminum/Steel
,”
Metals
,
13
(
4
), p.
768
.
You do not currently have access to this content.