Abstract

Bending is the fastest and most efficient process commonly used in the industry for processing thin metal sheets into three-dimensional shapes by localized deformation using only a single geometrical die. However, suppliers provide metal sheets with variations in dimension and mechanical properties, which causes inconsistencies in the final angle after bending. This requires manual checking and correction of each angle, resulting in inefficiency. The problem can be resolved by considering the variations in the sheets and adjusting the bending stroke accordingly. This study used neural network technology to create a model that predicts the final stroke required based on load measurements during the bending process. The model was implemented and validated using a laboratory press. With a root-mean-square error of less than 0.27 deg, the model demonstrates its feasibility for practical industrial applications within the range of its training data.

References

1.
DIN 6935:2011-10
,
2011
,
Cold Bending of Flat Steel Products
,
Beuth
,
Berlin
.
2.
Tan
,
Z.
,
Persson
,
B.
, and
Magnusson
,
C.
,
1992
, “
An Empiric Model for Controlling Springback in V-die Bending of Sheet Metals
,”
J. Mater. Process. Technol.
,
34
(
1–4
), pp.
449
455
.
3.
Leu
,
D. K.
, and
Hsieh
,
C. M.
,
2008
, “
The Influence of Coining Force on Spring-Back Reduction in V-die Bending Process
,”
J. Mater. Process. Technol.
,
196
(
1–3
), pp.
230
235
.
4.
Bruni
,
C.
,
Forcellese
,
A.
,
Gabrielli
,
F.
, and
Simoncini
,
M.
,
2006
, “
Air Bending of AZ31 Magnesium Alloy in Warm and Hot Forming Conditions
,”
J. Mater. Process. Technol.
,
177
(
1–3
), pp.
373
376
.
5.
Salandro
,
W. A.
,
Bunget
,
C.
, and
Mears
,
L.
,
2011
, “
Electroplastic Modeling of Bending Stainless Steel Sheet Metal Using Energy Methods
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041008
.
6.
Lange
,
K.
,
1985
,
Handbook of Metal Forming. P. 19.9
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
7.
Schuler
,
1998
,
Metal Forming Handbook
,
Springer
,
Berlin
, pp.
367
369
.
8.
Marciniak
,
Z.
,
Duncan
,
J. L.
, and
Hu
,
S. J.
,
2002
,
Mechanics of Sheet Metal Forming
, 2nd ed.,
Butterworth-Heinemann
,
Oxford
, pp.
93
94
.
9.
Hosford
,
W.
, and
Caddell
,
R.
,
2011
,
Metal Forming—Mechanics and Metallurgy
, 4th ed.,
Cambridge University Press
,
Cambridge
, pp.
199
202
.
10.
Vorkov
,
V.
,
Aerens
,
R.
,
Vandepitte
,
D.
, and
Duflou
,
J. R.
,
2018
, “
Analytical Prediction of Large Radius Bending by Circular Approximation
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121010
.
11.
Leu
,
D.-K.
,
2019
, “
Relationship Between Mechanical Properties and Geometric Parameters to Limitation Condition of Springback Based on Springback-Radius Concept in V-die Bending Process
,”
Int. J. Adv. Manuf. Technol.
,
101
(
1–4
), pp.
913
926
.
12.
Makinouchi
,
A.
,
Ogawa
,
H.
, and
Tozawa
,
Y.
,
1989
, “
Simulation of Sheet Bending Processes by Elastic-Plastic Finite Element Method
,”
CIRP Ann.
,
38
(
1
), pp.
279
282
.
13.
Hsu
,
T. C.
, and
Shien
,
I. R.
,
1997
, “
Finite Element Modeling of Sheet Forming Process With Bending Effects
,”
J. Mater. Process. Technol.
,
63
(
1–3
), pp.
733
737
.
14.
Uemori
,
T.
,
Okada
,
T.
, and
Yoshida
,
F.
,
1998
, “
Simulation of Springback in V-Bending Process by Elasto-Plastic Finite Element Method With Consideration of Bauschinger Effect
,”
Met. Mater. Int.
,
4
(
3
), pp.
311
314
.
15.
Huang
,
Y. M.
, and
Leu
,
D. K.
,
1998
, “
Effects of Process Variables on V-die Bending Process of Steel Sheet
,”
Int. J. Mech. Sci.
,
40
(
7
), pp.
631
650
.
16.
Garcia-Romeu
,
M. L.
,
Ciurana
,
J.
, and
Ferrer
,
I.
,
2007
, “
Springback Determination of Sheet Metals in an Air Bending Process Based on an Experimental Work
,”
J. Mater. Process. Technol.
,
191
(
1–3
), pp.
174
177
.
17.
Srinivasan
,
R.
,
Vasudevan
,
D.
, and
Padmanabhan
,
P.
,
2013
, “
Prediction of Bend Force and Bend Angle in Air Bending of Electrogalvanized Steel Using Response Surface Methodology
,”
J. Mech. Sci. Technol.
,
27
(
7
), pp.
2093
2105
.
18.
Özdemir
,
M.
,
2020
, “
Optimization of Spring Back in Air V Bending Processing Using Taguchi and RSM Method
,”
MECHANIKA
,
26
(
1
), pp.
73
81
.
19.
Şenol
,
Ö
,
Esat
,
V.
, and
Darendeliler
,
H.
,
2014
, “
Springback Analysis in Air Bending Process Through Experiment Based Artificial Neural Networks
,”
Procedia Eng.
,
81
, pp.
999
1004
.
20.
Elkins
,
K. L.
, and
Sturges
,
R. H.
,
1999
, “
Non-Iterative Control of Small-Radius Bend Angle
,”
J. Manuf. Process.
,
1
(
1
), pp.
18
30
.
21.
Elkins
,
K. L.
, and
Sturges
,
R. H.
,
1999
, “
Springback Analysis and Control in Small Radius air Bending
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
679
688
.
22.
Narayanasamy
,
R.
, and
Padmanabhan
,
P.
,
2012
, “
Comparison of Regression and Artificial Neural Network Model for the Prediction of Springback During Air Bending Process of Interstitial Free Steel Sheet
,”
J. Intell. Manuf.
,
23
(
3
), pp.
357
364
.
23.
Asmael
,
M.
,
Fubara
,
O. T.
, and
Nasir
,
T.
,
2023
, “
Prediction of Springback Behavior of vee Bending Process of AA5052 Aluminum Alloy Sheets Using Machine Learning
,”
Jordan J. Mech. Ind. Eng.
,
17
(
1
), pp.
1
14
.
24.
Teimouri
,
R.
,
Baseri
,
H.
,
Rahmani
,
B.
, and
Bakhshi-Jooybari
,
M.
,
2014
, “
Modeling and Optimization of Spring-Back in Bending Process Using Multiple Regression Analysis and Neural Computation
,”
Int. J. Mater. Form
,
7
(
2
), pp.
167
178
.
25.
Hardt
,
D. E.
,
1993
, “
Modeling and Control of Manufacturing Processes: Getting More Involved
,”
ASME J. Dyn. Syst. Meas. Control
,
115
(
2B
), pp.
291
300
.
26.
Hardt
,
D. E.
,
1996
,
Manufacturing Processes and Process Control
,
MIT Laboratory for Manufacturing and Productivity
,
Cambridge, MA.
, pp.
1
5
.
27.
Leu
,
D.-K.
,
2015
, “
Position Deviation and Springback in V-die Bending Process With Asymmetric Dies
,”
Int. J. Adv. Manuf. Technol.
,
79
(
5–8
), pp.
1095
1108
.
28.
Wang
,
J.
,
Verma
,
S.
,
Alexander
,
R.
, and
Gau
,
J. T.
,
2008
, “
Springback Control of Sheet Metal Air Bending Process
,”
J. Manuf. Process.
,
10
(
1
), pp.
21
27
.
29.
ISO 3574:2012
,
2012
,
Cold-Reduced Carbon Steel Sheet of Commercial and Drawing Qualities
,
ISO
,
Geneva
.
30.
ASTM A1008/A1008M-21a
,
2021
,
Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy With Improved Formability, Required Hardness, Solution Hardened, and Bake Hardenable
,
ASTM International
,
West Conshohocken, PA
.
31.
Harlow
,
D. G.
,
2004
, “
The Effect of Statistical Variability in Material Properties on Springback
,”
Int. J. Mater. Prod. Technol.
,
20
(
1–3
), pp.
180
192
.
32.
McCarthy
,
J.
,
Minsky
,
M. L.
,
Rochester
,
N.
, and
Shannon
,
C. E.
,
2006
, “
A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955
,”
AI Mag.
,
27
(
4
), pp.
12
14
.
33.
Garcia-Romeu
,
M. L.
, and
Ciurana
,
J.
,
2006
, “Springback and Geometry Prediction—Neural Networks Applied to the Air Bending Process,”
Intelligent Computing. ICIC 2006
, Vol.
4113
,
D. S.
Huang
,
K.
Li
,
G. W.
Irwin
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
470
475
.
34.
Inamdar
,
M. V.
,
Date
,
P. P.
, and
Desai
,
U. B.
,
2000
, “
Studies on the Prediction of Springback in Air vee Bending of Metallic Sheets Using an Artificial Neural Network
,”
J. Mater. Process. Technol.
,
108
(
1
), pp.
45
54
.
35.
Maind
,
S. B.
, and
Wankar
,
P.
,
2014
, “
Research Paper on Basic of Artificial Neural Network
,”
Int. J. Recent Innov. Trends Comput.
,
2
(
1
), pp.
96
100
.
36.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
37.
Olah
,
C.
,
2015
, “Understanding LSTM Networks,” https://colah.github.io/posts/2015-08-Understanding-LSTMs/, Accessed August 27, 2015.
38.
LeCun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient-Based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2324
.
39.
Shapiro
,
S. S.
, and
Wilk
,
M. B.
,
1965
, “
An Analysis of Variance Test for Normality (Complete Samples)
,”
Biometrika
,
52
(
3–4
), pp.
591
611
.
40.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2017
, “
Adam: A Method for Stochastic Optimization
,” arXiv:1412.6980v9 [Preprint], 15 p., https://arxiv.org/abs/1412.6980.
41.
Liu
,
B.
,
Shen
,
W.
,
Li
,
P.
, and
Zhu
,
X.
,
2019
, “
Accelerate Mini-Batch Machine Learning Training With Dynamic Batch Size Fitting
,”
IJCNN 2019: Proceedings of the International Joint Conference on Neural Networks
,
IEEE
,
Budapest, Hungary
,
July 14–19
, pp.
1
8
.
You do not currently have access to this content.