Abstract

One of important control problems in calendering system is the web lateral position control: during calendering, the web deforms with a reduction of thickness and an expansion in width, this leads to potential lateral position deviation, especially when the web is not flat. This problem sometimes causes quality issues, hence, precise modeling and control need to be developed. This paper focuses on the web lateral position guiding by modeling and controlling a calendering system: a modeling method and a corresponding model predictive control are proposed. The study is based on electrode web calendering for Li-ion battery production and is supported by data collected from experiments on an industrial-scale winding machine.

References

1.
Stumper
,
B.
,
Dhom
,
J.
,
Schlosser
,
L.
,
Schreiner
,
D.
,
Mayr
,
A.
, and
Daub
,
R.
,
2022
, “
Modeling of the Lithium Calendering Process for Direct Contact Prelithiation of Lithium-Ion Batteries
,”
Procedia CIRP
,
107
(
4
), pp.
984
990
.
2.
Litvinov
,
V.
, and
Farnood
,
R.
,
2006
, “
Modeling Thickness and Roughness Reduction of Paper in Calendering
,”
Nord. Pulp. Pap. Res. J.
,
21
(
3
), pp.
365
371
.
3.
Deighton
,
S. P.
,
2004
,
Modeling the Compression of Paper in Calender Nip
,
University of Toronto
,
Ontario
.
4.
Wang
,
X.
,
Ganguly
,
S.
,
Chandrashekhara
,
K.
,
Buchely
,
M. F.
,
Lekakh
,
S. N.
,
Van Aken
,
D. C.
,
O’Malley
,
R. J.
,
Bai
,
D.
,
Wang
,
Y.
, and
Natarajan
,
T.
,
2018
, “Modeling and Simulation of Mass Flow of Steel Plate/Slab During Hot Rolling.”
5.
Schreiner
,
D.
,
Klinger
,
A.
, and
Reinhart
,
G.
,
2020
, “
Modeling of the Calendering Process for Lithium-Ion Batteries With DEM Simulation
,”
Procedia CIRP
,
93
(
1
), pp.
149
155
.
6.
Schreiner
,
D.
,
Lindenblatt
,
J.
,
Günter
,
F. J.
, and
Reinhart
,
G.
,
2021
, “
DEM Simulations of the Calendering Process: Parameterization of the Electrode Material of Lithium-Ion Batteries
,”
Procedia CIRP
,
104
(
1
), pp.
91
97
.
7.
Ngandjong
,
A. C.
,
Lombardo
,
T.
,
Primo
,
E. N.
,
Chouchane
,
M.
,
Shodiev
,
A.
,
Arcelus
,
O.
, and
Franco
,
A. A.
,
2021
, “
Investigating Electrode Calendering and Its Impact on Electrochemical Performance by Means of a New Discrete Element Method Model: Towards a Digital Twin of Li-Ion Battery Manufacturing
,”
J. Power Sources
,
485
(
2
), p.
229320
.
8.
Nguyen
,
T. N. K.
,
Dairay
,
T.
,
Meunier
,
R.
, and
Mougeot
,
M.
,
2022
, “
Physics-Informed Neural Networks for Non-Newtonian Fluid Thermo-Mechanical Problems: An Application to Rubber Calendering Process
,”
Eng. Appl. Artif. Intell.
,
114
(
3
), p.
105176
.
9.
Mayr
,
A.
,
Schreiner
,
D.
,
Stumper
,
B.
, and
Daub
,
R.
,
2022
, “
In-Line Sensor-Based Process Control of the Calendering Process for Lithium-Ion Batteries
,”
Procedia CIRP
,
107
(
2
), pp.
295
301
.
10.
Kanth
,
N.
, and
Kumar Pathak
,
B.
,
2016
, “
Artificial Neural Network for Modeling the Uniform Load on Nip Width of Machine Calendering
,”
J. Inf. Optim. Sci.
,
37
(
6
), pp.
861
871
.
11.
Gamal
,
O.
,
Mohamed
,
M. I. P.
,
Patel
,
C. G.
, and
Roth
,
H.
,
2021
, “
Data-Driven Model-Free Intelligent Roll Gap Control of Bar and Wire Hot Rolling Process Using Reinforcement Learning
,”
Int. J. Mech. Eng. Robot. Res.
,
10
(
7
), pp.
349
356
.
12.
Deng
,
J.
,
Sierla
,
S.
,
Sun
,
J.
, and
Vyatkin
,
V.
,
2022
, “
Reinforcement Learning for Industrial Process Control: A Case Study in Flatness Control in Steel Industry
,”
Comput. Ind.
,
143
(
5
), p.
103748
.
13.
Mahfouf
,
M.
,
Yang
,
Y.
,
Gama
,
M.
, and
Linkens
,
D.
,
2005
, “
Roll Speed and Roll Gap Control With Neural Network Compensation
,”
ISIJ Int.
,
45
(
6
), pp.
841
850
.
14.
Lee
,
Y.
,
2004
,
Rod and Bar Rolling: Theory and Applications
,
CRC Press
,
Boca Raton, FL
.
15.
Zhang
,
W.
, and
Bay
,
N.
,
1997
, “
Numerical Analysis of Cross Shear Plate Rolling
,”
CIRP Ann.
,
46
(
1
), pp.
195
200
.
16.
Yu
,
Y.
,
Zeng
,
R.
,
Xue
,
Y.
, and
Zhao
,
X.
,
2023
, “
Optimization Strategy of Rolling Mill Hydraulic Roll Gap Control System Based on Improved Particle Swarm PID Algorithm
,”
Biomimetics
,
8
(
2
), p.
143
.
17.
Brodd
,
R. J.
, and
Tagawa
,
K.
,
2002
, “Lithium-Ion Cell Production Processes,”
Advances in Lithium-Ion Batteries
,
W. A.
Schalkwijk
and
B.
Scrosati
, eds.,
Springer
, pp.
267
288
.
18.
Pernis
,
R.
, and
Kvackaj
,
T.
,
2015
, “
New Numerical Solution of Von Karman Equation of Lengthwise Rolling
,”
J. Appl. Math.
,
2015
(
7
).
19.
Ławryńczuk
,
M.
,
2014
, “Computationally Efficient Model Predictive Control Algorithms,”
Studies in Systems, Decision and Control
, vol. 3,
Springer
.
20.
Tatjewski
,
P.
,
2007
,
Advanced Control of Industrial Processes: Structures and Algorithms
,
Springer Science & Business Media
,
Berlin
.
21.
Nocedal
,
J.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
,
Springer
,
Berlin
.
You do not currently have access to this content.