Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Laser powder bed fusion (LPBF) is an additive manufacturing technique that is gaining popularity for producing metallic parts in various industries. However, parts produced by LPBF are prone to residual stress, deformation, cracks, and other quality defects due to uneven temperature distribution during the LPBF process. To address this issue, in prior work, the authors have proposed SmartScan, a method for determining laser scan sequence in LPBF using an intelligent (i.e., model-based and optimization-driven) approach, rather than using heuristics, and applied it to simple 2D geometries. This paper presents a generalized SmartScan methodology that is applicable to arbitrary 3D geometries. This is achieved by (1) expanding the thermal model and optimization approach used in SmartScan to multiple layers, (2) enabling SmartScan to process shapes with arbitrary contours and infill patterns within each layer, (3) providing the optimization in SmartScan with a balance of exploration and exploitation to make it less myopic, and (4) improving SmartScan’s computational efficiency via model order reduction using singular value decomposition. Sample 3D test artifacts are simulated and printed using SmartScan in comparison with common heuristic scan sequences. Reductions of up to 92% in temperature inhomogeneity, 86% in residual stress, 24% in maximum deformation, and 50% in geometric inaccuracy were observed using SmartScan, without significantly sacrificing print speed. An approach for using SmartScan for printing complex 3D parts in practice, by integrating it as a plug-in to a commercial slicing software, was also demonstrated experimentally, along with its benefits in significantly improving printed part quality.

References

1.
Chowdhury
,
S.
,
Yadaiah
,
N.
,
Prakash
,
C.
,
Ramakrishna
,
S.
,
Dixit
,
S.
,
Gupta
,
L. R.
, and
Buddhi
,
D.
,
2022
, “
Laser Powder Bed Fusion: A State-of-the-Art Review of the Technology, Materials, Properties & Defects, and Numerical Modelling
,”
J. Mater. Res. Technol.
,
20
, pp.
2109
2172
.
2.
Kotadia
,
H.
,
Gibbons
,
G.
,
Das
,
A.
, and
Howes
,
P.
,
2021
, “
A Review of Laser Powder Bed Fusion Additive Manufacturing of Aluminium Alloys: Microstructure and Properties
,”
Addit. Manuf.
,
46
, p.
102155
.
3.
Parry
,
L.
,
Ashcroft
,
I.
, and
Wildman
,
R.
,
2016
, “
Understanding the Effect of Laser Scan Strategy on Residual Stress in Selective Laser Melting Through Thermo-mechanical Simulation
,”
Addit. Manuf.
,
12
, pp.
1
15
.
4.
Dong
,
G.
,
Wong
,
J. C.
,
Lestandi
,
L.
,
Mikula
,
J.
,
Vastola
,
G.
,
Jhon
,
M. H.
,
Dao
,
M. H.
,
Kizhakkinan
,
U.
,
Ford
,
C. S.
, and
Rosen
,
D. W.
,
2022
, “
A Part-Scale, Feature-Based Surrogate Model for Residual Stresses in the Laser Powder Bed Fusion Process
,”
J. Mater. Process. Technol.
,
304
, p.
117541
.
5.
Surana
,
A.
,
Lynch
,
M. E.
,
Nassar
,
A. R.
,
Ojard
,
G. C.
,
Fisher
,
B. A.
,
Corbin
,
D.
, and
Overdorff
,
R.
,
2023
, “
Flaw Detection in Multi-laser Powder Bed Fusion Using In Situ Coaxial Multi-spectral Sensing and Deep Learning
,”
ASME J. Manuf. Sci. Eng.
,
145
(
5
), p.
051005
.
6.
Chen
,
Q.
,
Taylor
,
H.
,
Takezawa
,
A.
,
Liang
,
X.
,
Jimenez
,
X.
,
Wicker
,
R.
, and
To
,
A. C.
,
2021
, “
Island Scanning Pattern Optimization for Residual Deformation Mitigation in Laser Powder Bed Fusion Via Sequential Inherent Strain Method and Sensitivity Analysis
,”
Addit. Manuf.
,
46
, p.
102116
.
7.
Cao
,
S.
,
Zou
,
Y.
,
Lim
,
C. V. S.
, and
Wu
,
X.
,
2021
, “
Review of Laser Powder Bed Fusion (LPBF) Fabricated Ti-6Al-4V: Process, Post-process Treatment, Microstructure, and Property
,”
Light: Adv. Manuf.
,
2
(
3
), p.
1
.
8.
Guo
,
C.
,
Li
,
S.
,
Shi
,
S.
,
Li
,
X.
,
Hu
,
X.
,
Zhu
,
Q.
, and
Ward
,
R. M.
,
2020
, “
Effect of Processing Parameters on Surface Roughness, Porosity and Cracking of As-Built IN738LC Parts Fabricated by Laser Powder Bed Fusion
,”
J. Mater. Process. Technol.
,
285
, p.
116788
.
9.
Khan
,
H. M.
,
Karabulut
,
Y.
,
Kitay
,
O.
,
Kaynak
,
Y.
, and
Jawahir
,
I. S.
,
2021
, “
Influence of the Post-processing Operations on Surface Integrity of Metal Components Produced by Laser Powder Bed Fusion Additive Manufacturing: A Review
,”
Mach. Sci. Technol.
,
25
(
1
), pp.
118
176
.
10.
Kumar
,
V. P.
, and
Jebaraj
,
A. V.
,
2023
, “
Comprehensive Review on Residual Stress Control Strategies in Laser-Based Powder Bed Fusion Process—Challenges and Opportunities
,”
Lasers Manuf. Mater. Process.
,
10
, pp.
400
442
.
11.
Reiff
,
C.
,
Bubeck
,
W.
,
Krawczyk
,
D.
,
Steeb
,
M.
,
Lechler
,
A.
, and
Verl
,
A.
,
2021
, “
Learning Feedforward Control for Laser Powder Bed Fusion
,”
Procedia CIRP
,
96
, pp.
127
132
.
12.
Cao
,
Y.
,
Moumni
,
Z.
,
Zhu
,
J.
,
Gu
,
X.
,
Zhang
,
Y.
,
Zhai
,
X.
, and
Zhang
,
W.
,
2023
, “
Effect of Scanning Speed on Fatigue Behavior of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
,”
J. Mater. Process. Technol.
,
319
, p.
118043
.
13.
Riensche
,
A.
,
Bevans
,
B. D.
,
Smoqi
,
Z.
,
Yavari
,
R.
,
Krishnan
,
A.
,
Gilligan
,
J.
,
Piercy
,
N.
,
Cole
,
K.
, and
Rao
,
P.
,
2022
, “
Feedforward Control of Thermal History in Laser Powder Bed Fusion: Toward Physics-Based Optimization of Processing Parameters
,”
Mater. Des.
,
224
, p.
111351
.
14.
Wang
,
R.
,
Standfield
,
B.
,
Dou
,
C.
,
Law
,
A. C.
, and
Kong
,
Z. J.
,
2023
, “
Real-Time Process Monitoring and Closed-Loop Control on Laser Power Via a Customized Laser Powder Bed Fusion Platform
,”
Addit. Manuf.
,
66
, p.
103449
.
15.
Zhang
,
J.
,
Patel
,
S.
,
Liu
,
Z.
,
Lyu
,
T.
,
Wang
,
Y.
,
Hua
,
Y.
,
Wang
,
W.
,
Hattrick-Simpers
,
J.
,
Vlasea
,
M.
, and
Zou
,
Y.
,
2024
, “
A Data-Driven Framework to Improve the Wear Resistance of a Low-Alloy Steel Fabricated by Laser Powder Bed Fusion
,”
J. Manuf. Process.
,
115
, pp.
56
67
.
16.
Hu
,
Z.
,
Gao
,
S.
,
Tai
,
J.
,
Qu
,
S.
,
Ding
,
J.
,
Song
,
X.
, and
Fan
,
Z.
,
2023
, “
Columnar Grain Width Control for SS316L Via Hatch Spacing Manipulation in Laser Powder Bed Fusion
,”
Mater. Res. Lett.
,
11
(
3
), pp.
231
238
.
17.
Zhang
,
Z.
,
Wang
,
S.
,
Liu
,
H.
,
Wang
,
L.
, and
Xiao
,
X.
,
2023
, “
Effects of Hatch Distance on the Microstructure and Mechanical Anisotropy of 316 L Stainless Steel Fabricated by Laser Powder Bed Fusion
,”
J. Mater. Eng. Perform.
,
32
(
10
), pp.
4757
4767
.
18.
Bailey
,
C. M.
,
Morrow
,
J. A.
,
Stallbaumer-Cyr
,
E. M.
,
Weeks
,
C.
,
Derby
,
M. M.
, and
Thompson
,
S. M.
,
2022
, “
Effects of Build Angle on Additively Manufactured Aluminum Alloy Surface Roughness and Wettability
,”
ASME J. Manuf. Sci. Eng.
,
144
(
8
), p.
081010
.
19.
Boissier
,
M.
,
Allaire
,
G.
, and
Tournier
,
C.
,
2022
, “
Time Dependent Scanning Path Optimization for the Powder Bed Fusion Additive Manufacturing Process
,”
Comput. Aided Des.
,
142
, p.
103122
.
20.
Kim
,
S. I.
, and
Hart
,
A. J.
,
2022
, “
A Spiral Laser Scanning Routine for Powder Bed Fusion Inspired by Natural Predator-Prey Behaviour
,”
Virtual Phys. Prototyping
,
17
(
2
), pp.
239
255
.
21.
Liu
,
Y.
,
Li
,
J.
,
Xu
,
K.
,
Cheng
,
T.
,
Zhao
,
D.
,
Li
,
W.
,
Teng
,
Q.
, and
Wei
,
Q.
,
2022
, “
An Optimized Scanning Strategy to Mitigate Excessive Heat Accumulation Caused by Short Scanning Lines in Laser Powder Bed Fusion Process
,”
Addit. Manuf.
,
60
, p.
103256
.
22.
Qin
,
M.
,
Qu
,
S.
,
Ding
,
J.
,
Song
,
X.
,
Gao
,
S.
,
Wang
,
C. C.
, and
Liao
,
W.-H.
,
2023
, “
Adaptive Toolpath Generation for Distortion Reduction in Laser Powder Bed Fusion Process
,”
Addit. Manuf.
,
64
, p.
103432
.
23.
Potočnik
,
P.
,
Jeromen
,
A.
, and
Govekar
,
E.
,
2024
, “
Genetic Algorithm-Based Framework for Optimization of Laser Beam Path in Additive Manufacturing
,”
Metals
,
14
(
4
), p.
410
.
24.
Huang
,
R.
,
Wu
,
Y.
,
Sun
,
Y.
,
Tian
,
S.
,
Wang
,
D.
, and
Yang
,
Y.
,
2024
, “
Scanning Strategies for the 316L Part With Lattice Structures Fabricated by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
133
, pp.
1
14
.
25.
Qin
,
M.
,
Ding
,
J.
,
Qu
,
S.
,
Song
,
X.
,
Wang
,
C. C.
, and
Liao
,
W.-H.
,
2024
, “
Deep Reinforcement Learning Based Toolpath Generation for Thermal Uniformity in Laser Powder Bed Fusion Process
,”
Addit. Manuf.
,
79
, p.
103937
.
26.
Yang
,
Y.
,
Billingham
,
J.
,
Axinte
,
D.
, and
Liao
,
Z.
,
2023
, “
A Rational Approach to Beam Path Planning in Additive Manufacturing: the Inverse Heat Placement Problem
,”
Proc. R. Soc. A
,
479
(
2270
), p.
20220386
.
27.
Mugwagwa
,
L.
,
Dimitrov
,
D.
,
Matope
,
S.
, and
Yadroitsev
,
I.
,
2019
, “
Evaluation of the Impact of Scanning Strategies on Residual Stresses in Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
102
, pp.
2441
2450
.
28.
Li
,
C.
,
Fu
,
C.
,
Guo
,
Y.
, and
Fang
,
F.
,
2016
, “
A Multiscale Modeling Approach for Fast Prediction of Part Distortion in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
229
, pp.
703
712
.
29.
Ramos
,
D.
,
Belblidia
,
F.
, and
Sienz
,
J.
,
2019
, “
New Scanning Strategy to Reduce Warpage in Additive Manufacturing
,”
Addit. Manuf.
,
28
, pp.
554
564
.
30.
Kruth
,
J.
,
Froyen
,
L.
,
Vaerenbergh
,
J. V.
,
Mercelis
,
P.
,
Rombouts
,
M.
, and
Lauwers
,
B.
,
2004
, “
Selective Laser Melting of Iron-Based Powder
,”
J. Mater. Process. Technol.
,
149
, pp.
616
622
.
31.
Pant
,
P.
,
Salvemini
,
F.
,
Proper
,
S.
,
Luzin
,
V.
,
Simonsson
,
K.
,
Sjöström
,
S.
,
Hosseini
,
S.
,
Peng
,
R. L.
, and
Moverare
,
J.
,
2022
, “
A Study of the Influence of Novel Scan Strategies on Residual Stress and Microstructure of L-Shaped LPBF IN718 Samples
,”
Mater. Des.
,
214
, p.
110386
.
32.
Yang
,
J.
,
Kang
,
D.
,
Yeon
,
S. M.
,
Son
,
Y.
, and
Park
,
S. H.
,
2024
, “
Interval Island Laser-Scanning Strategy of Ti–6Al–4V Part Additively Manufactured for Anisotropic Stress Reduction
,”
Int. J. Precis. Eng. Manuf.
,
25
, pp.
1
13
.
33.
Ramani
,
K. S.
,
He
,
C.
,
Tsai
,
Y.-L.
, and
Okwudire
,
C. E.
,
2022
, “
SmartScan: An Intelligent Scanning Approach for Uniform Thermal Distribution, Reduced Residual Stresses and Deformations in PBF Additive Manufacturing
,”
Addit. Manuf.
,
52
, p.
102643
.
34.
He
,
C.
,
Ramani
,
K. S.
,
Tsai
,
Y.-L.
, and
Okwudire
,
C. E.
,
2022
, “
A Simplified Scan Sequence Optimization Approach for PBF Additive Manufacturing of Complex Geometries
,”
2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Sapporo, Hokkaido, Japan
,
July 11–15
, pp.
1004
1009
.
35.
He
,
C.
,
Tsai
,
Y.-L.
, and
Okwudire
,
C. E.
,
2022
, “
A Comparative Study on the Effects of an Advanced Scan Pattern and Intelligent Scan Sequence on Thermal Distribution, Part Deformation, and Printing Time in PBF Additive Manufacturing
,”
Manufacturing Science and Engineering Conference
,
West Lafayette, IN
,
June 27–July 1
.
36.
He
,
C.
,
Ramani
,
K. S.
, and
Okwudire
,
C. E.
,
2023
, “
An Intelligent Scanning Strategy (SmartScan) for Improved Part Quality in Multi-laser PBF Additive Manufacturing
,”
Addit. Manuf.
,
64
, p.
103427
.
37.
He
,
C.
, and
Okwudire
,
C.
,
2023
, “
Scan Sequence Optimization for Reduced Residual Stress and Distortion in PBF Additive Manufacturing—An AISI 316L Case Study
,”
2023 NDIA Michigan Chapter Ground Vehicle Systems Engineering and Technology Symposium
,
Novi, MI
,
Aug. 15–17
.
38.
Scheel
,
P.
,
Markovic
,
P.
,
Van Petegem
,
S.
,
Makowska
,
M. G.
,
Wrobel
,
R.
,
Mayer
,
T.
,
Leinenbach
,
C.
,
Mazza
,
E.
, and
Hosseini
,
E.
,
2023
, “
A Close Look at Temperature Profiles During Laser Powder Bed Fusion Using Operando X-Ray Diffraction and Finite Element Simulations
,”
Addit. Manuf. Lett.
,
6
, p.
100150
.
39.
Yavari
,
R.
,
Williams
,
R.
,
Riensche
,
A.
,
Hooper
,
P. A.
,
Cole
,
K. D.
,
Jacquemetton
,
L.
,
Halliday
,
H. S.
, and
Rao
,
P. K.
,
2021
, “
Thermal Modeling in Metal Additive Manufacturing Using Graph Theory—Application to Laser Powder Bed Fusion of a Large Volume Impeller
,”
Addit. Manuf.
,
41
, p.
101956
.
40.
Wei
,
L. C.
,
Ehrlich
,
L. E.
,
Powell-Palm
,
M. J.
,
Montgomery
,
C.
,
Beuth
,
J.
, and
Malen
,
J. A.
,
2018
, “
Thermal Conductivity of Metal Powders for Powder Bed Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
201
208
.
41.
Mahmoodkhani
,
Y.
,
Ali
,
U.
,
Shahabad
,
S. I.
,
Kasinathan
,
A. R.
,
Esmaeilizadeh
,
R.
,
Keshavarzkermani
,
A.
,
Marzbanrad
,
E.
, and
Toyserkani
,
E.
,
2019
, “
On the Measurement of Effective Powder Layer Thickness in Laser Powder-Bed Fusion Additive Manufacturing of Metals
,”
Prog. Addit. Manuf.
,
4
, pp.
109
116
.
42.
Ning
,
J.
,
Sievers
,
D. E.
,
Garmestani
,
H.
, and
Liang
,
S. Y.
,
2019
, “
Analytical Thermal Modeling of Metal Additive Manufacturing by Heat Sink Solution
,”
Materials
,
12
(
16
), p.
2568
.
43.
Wang
,
H.
,
Zariphopoulou
,
T.
, and
Zhou
,
X.
,
2018
, “
Exploration Versus Exploitation in Reinforcement Learning: A Stochastic Control Approach
,” preprint arXiv:1812.01552.
44.
Chung
,
J. J.
,
Lawrance
,
N. R.
, and
Sukkarieh
,
S.
,
2013
, “
Gaussian Processes for Informative Exploration in Reinforcement Learning
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
2633
2639
.
45.
Lipowski
,
A.
, and
Lipowska
,
D.
,
2012
, “
Roulette-Wheel Selection Via Stochastic Acceptance
,”
Phys. A: Stat. Mech. Appl.
,
391
(
6
), pp.
2193
2196
.
46.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Sawston, UK
.
47.
Wang
,
Z.
,
Yang
,
Z.
,
Liu
,
F.
, and
Zhang
,
W.
,
2023
, “
Influence of the Scanning Angle on the Grain Growth and Mechanical Properties of Ni10Cr6W1Fe9Ti1 HEA Fabricated Using the LPBF–AM Method
,”
Mater. Sci. Eng. A
,
864
, p.
144596
.
48.
Afazov
,
S.
,
Denmark
,
W. A.
,
Toralles
,
B. L.
,
Holloway
,
A.
, and
Yaghi
,
A.
,
2017
, “
Distortion Prediction and Compensation in Selective Laser Melting
,”
Addit. Manuf.
,
17
, pp.
15
22
.
49.
Williams
,
R. J.
,
Vecchiato
,
F.
,
Kelleher
,
J.
,
Wenman
,
M. R.
,
Hooper
,
P. A.
, and
Davies
,
C. M.
,
2020
, “
Effects of Heat Treatment on Residual Stresses in the Laser Powder Bed Fusion of 316L Stainless Steel: Finite Element Predictions and Neutron Diffraction Measurements
,”
J. Manuf. Process.
,
57
, pp.
641
653
.
50.
Peter
,
N.
,
Pitts
,
Z.
,
Thompson
,
S.
, and
Saharan
,
A.
,
2020
, “
Benchmarking Build Simulation Software for Laser Powder Bed Fusion of Metals
,”
Addit. Manuf.
,
36
, p.
101531
.
51.
Yang
,
S.
,
Clare
,
A. T.
,
Bennett
,
C.
, and
Jin
,
X.
,
2024
, “
Informing Directed Energy Deposition Strategies Through Understanding the Evolution of Residual Stress
,”
Addit. Manuf.
,
79
, p.
103907
.
52.
Mazumder
,
S.
,
2016
, “Chapter 2—The Finite Difference Method,”
Numerical Methods for Partial Differential Equations
, S. Mazumder, ed.,
Academic Press
,
Cambridge, MA
, pp.
51
101
.
You do not currently have access to this content.