Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The objective of this study is to investigate the evolution of surface geometry during pulsed laser surface melting (pLSM) via level-set method-based interface tracking numerical framework. Existing models to track surface geometry are inaccurate and computationally expensive. Therefore, they have limited use in gaining understanding of the surface evolution during pLSM. A numerical model, integrating the level-set approach, fluid flow, and heat transfer dynamics, is detailed in this paper. The multi-phase numerical model achieves accurate tracking of interface for a single pulse by implementing the volumetric laser heat source on the moving interface by modifying Beer–Lambert's law. The accuracy of the single pulse model is confirmed by comparing its peak-to-valley height (PVH) to the experimental data. The deviation in PVH is limited to about 15%, with a maximum root mean square error of ∼0.24 µm, highlighting the model's reliability. Additionally, the evolved surface of a single pulse from the model is replicated over an area with dedicated overlaps to generate the predicted textured surface with reasonable accuracy. Some inaccuracies in the predicted surface roughness values were observed because the textures were generated based on a single pulse geometry computed on an initially flat surface. Nonetheless, the results highlight a significant development in numerical frameworks for pLSM and can be used as a tool to gain deeper insights into the process and for process optimization.

References

1.
Eghbali
,
N.
,
Naffakh-Moosavy
,
H.
,
Sadeghi Mohammadi
,
S.
, and
Naderi-Manesh
,
H.
,
2021
, “
The Influence of Laser Frequency and Groove Distance on Cell Adhesion, Cell Viability, and Antibacterial Characteristics of Ti-6Al-4V Dental Implants Treated by Modern Fiber Engraving Laser
,”
Dent. Mater.
,
37
(
3
), pp.
547
558
.
2.
Mohammadzadeh Asl
,
S.
,
Ganjali
,
M.
, and
Karimi
,
M.
,
2019
, “
Surface Modification of 316L Stainless Steel by Laser-Treated HA-PLA Nanocomposite Films Toward Enhanced Biocompatibility and Corrosion-Resistance In Vitro
,”
Surf. Coat. Technol.
,
363
, pp.
236
243
.
3.
Mukherjee
,
S.
,
Dhara
,
S.
, and
Saha
,
P.
,
2015
, “
Enhancing the Biocompatibility of Ti6Al4V Implants by Laser Surface Microtexturing: An In Vitro Study
,”
Int. J. Adv. Manuf. Technol.
,
76
(
1–4
), pp.
5
15
.
4.
Rahimi
,
A.
,
Hojjati
,
M.
,
Dolatabadi
,
A.
, and
Moreau
,
C.
,
2021
, “
Thermal Spray Coating on Polymeric Composite for De-Icing and Anti-Icing Applications
,”
ASME J. Manuf. Sci. Eng.
,
143
(
10
), p.
101008
.
5.
Garcés
,
G.
,
Cristina
,
M. C.
,
Torralba
,
M.
, and
Adeva
,
P.
,
2000
, “
Texture of Magnesium Alloy Films Growth by Physical Vapour Deposition (PVD)
,”
J. Alloys Compd.
,
309
(
1–2
), pp.
229
238
.
6.
Bañon
,
F.
,
Sambruno
,
A.
,
Batista
,
M.
,
Simonet
,
B.
, and
Salguero
,
J.
,
2020
, “
Surface Quality and Free Energy Evaluation of S275 Steel by Shot Blasting, Abrasive Water Jet Texturing and Laser Surface Texturing
,”
Metals
,
10
(
2
), p.
290
.
7.
(Subbu) Subramanian
,
K.
,
Ramesh Babu
,
N.
,
Jain
,
A.
, and
Vairamuthu
,
R.
,
2017
, “
Microscopic Interactions in Surface Generation Processes Using Abrasive Tools
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121016
.
8.
Chen
,
L.
,
Liu
,
Z.
,
Wang
,
B.
,
Song
,
Q.
,
Wan
,
Y.
, and
Chen
,
L.
,
2019
, “
Surface Characterization and Tribological Performance of Anodizing Micro-Textured Aluminum-Silicon Alloys
,”
Materials
,
12
(
11
), p.
1862
.
9.
Kawasegi
,
N.
,
Takano
,
N.
,
Oka
,
D.
,
Morita
,
N.
,
Yamada
,
S.
,
Kanda
,
K.
,
Takano
,
S.
,
Obata
,
T.
, and
Ashida
,
K.
,
2006
, “
Nanomachining of Silicon Surface Using Atomic Force Microscope With Diamond Tip
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
723
729
.
10.
Bhatla
,
A.
, and
Yao
,
Y. L.
,
2009
, “
Effect of Laser Surface Modification on the Crystallinity of Poly(L-Lactic Acid)
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051004
.
11.
Yilbas
,
B. S.
,
Matthews
,
A.
,
Karatas
,
C.
,
Leyland
,
A.
,
Khaled
,
M.
,
Abu-Dheir
,
N.
,
Al-Aqeeli
,
N.
, and
Nie
,
X.
,
2014
, “
Laser Texturing of Plasma Electrolytically Oxidized Aluminum 6061 Surfaces for Improved Hydrophobicity
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
054501
.
12.
Bordatchev
,
E. V.
,
Hafiz
,
A. M. K.
, and
Tutunea-Fatan
,
O. R.
,
2014
, “
Performance of Laser Polishing in Finishing of Metallic Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
73
(
1–4
), pp.
35
52
.
13.
Perry
,
T. L.
,
Werschmoeller
,
D.
,
Li
,
X.
,
Pfefferkorn
,
F. E.
, and
Duffie
,
N. A.
,
2007
, “
Micromelting for Laser Micro Polishing of Meso/Micro Metallic Components
,”
ASME 2007 International Manufacturing Science and Engineering Conference, ASMEDC
,
Atlanta, GA
,
Oct. 15–18
, pp.
363
369
.
14.
Gupta
,
R.
,
Hijam
,
J.
,
Balhara
,
R.
, and
Vadali
,
M.
,
2022
, “
Design of Micro-Scale Periodic Surface Textures by Pulsed Laser Melting and Its Influence on Wettability
,”
Volume 2: Manufacturing Processes; Manufacturing Systems, American Society of Mechanical Engineers
,
West Lafayette, IN
, p.
V002T05A058
.
15.
Ma
,
C.
,
Vadali
,
M.
,
Duffie
,
N. A.
,
Pfefferkorn
,
F. E.
, and
Li
,
X.
,
2013
, “
Melt Pool Flow and Surface Evolution During Pulsed Laser Micro Polishing of Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061023
.
16.
Mistry
,
U.
, and
Vadali
,
M.
,
2022
, “
A Steady-State Semi-Analytical Approximation of Melt Pool Evolution in Pulsed Laser Surface Melting
,”
J. Manuf. Processes
,
74
, pp.
123
135
.
17.
Mukherjee
,
T.
,
Wei
,
H. L.
,
De
,
A.
, and
DebRoy
,
T.
,
2018
, “
Heat and Fluid Flow in Additive Manufacturing – Part I: Modeling of Powder Bed Fusion
,”
Comput. Mater. Sci.
,
150
, pp.
304
313
.
18.
Mukherjee
,
T.
,
Wei
,
H. L.
,
De
,
A.
, and
DebRoy
,
T.
,
2018
, “
Heat and Fluid Flow in Additive Manufacturing – Part II: Powder Bed Fusion of Stainless Steel, and Titanium, Nickel and Aluminum Base Alloys
,”
Comput. Mater. Sci.
,
150
, pp.
369
380
.
19.
Bayat
,
M.
,
Thanki
,
A.
,
Mohanty
,
S.
,
Witvrouw
,
A.
,
Yang
,
S.
,
Thorborg
,
J.
,
Tiedje
,
N. S.
, and
Hattel
,
J. H.
,
2019
, “
Keyhole-Induced Porosities in Laser-Based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-Fidelity Modelling and Experimental Validation
,”
Addit. Manuf.
,
30
, p.
100835
.
20.
Krzyzanowski
,
M.
, and
Svyetlichnyy
,
D.
,
2022
, “
A Multiphysics Simulation Approach to Selective Laser Melting Modelling Based on Cellular Automata and Lattice Boltzmann Methods
,”
Comp. Part. Mech
,
9
(
1
), pp.
117
133
.
21.
Du
,
Y.
,
Mukherjee
,
T.
, and
DebRoy
,
T.
,
2021
, “
Physics-Informed Machine Learning and Mechanistic Modeling of Additive Manufacturing to Reduce Defects
,”
Appl. Mater.Today
,
24
, p.
101123
.
22.
Mondal
,
B.
,
Mukherjee
,
T.
, and
DebRoy
,
T.
,
2022
, “
Crack Free Metal Printing Using Physics Informed Machine Learning
,”
Acta Mater.
,
226
, p.
117612
.
23.
Li
,
K.
,
Zhao
,
Z.
,
Zhou
,
H.
,
Zhou
,
H.
, and
Jin
,
J.
,
2020
, “
Numerical Analyses of Molten Pool Evolution in Laser Polishing Ti6Al4V
,”
J. Manuf. Processes
,
58
, pp.
574
584
.
24.
Narayanan
,
V.
,
Singh
,
R.
, and
Marla
,
D.
,
2021
, “
A Computational Model to Predict Surface Roughness in Laser Surface Processing of Mild Steel Using Nanosecond Pulses
,”
J. Manuf. Processes
,
68
, pp.
1880
1889
.
25.
Ghate
,
N. D.
, and
Shrivastava
,
A.
,
2021
, “
Numerical and Experimental Investigation of Complex Surface Topography Evolution During Laser Surface Modification With Raster Scan
,”
J. Manuf. Processes
,
69
, pp.
368
377
.
26.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
27.
Sethian
,
J. A.
, and
Smereka
,
P.
,
2003
, “
Level Set Methods for Fluid Interfaces
,”
Annu. Rev. Fluid Mech.
,
35
(
1
), pp.
341
372
.
28.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.
29.
Losasso
,
F.
,
Fedkiw
,
R.
, and
Osher
,
S.
,
2006
, “
Spatially Adaptive Techniques for Level Set Methods and Incompressible Flow
,”
Comput. Fluids
,
35
(
10
), pp.
995
1010
.
30.
Pringuey
,
T.
, and
Cant
,
R. S.
,
2014
, “
Robust Conservative Level Set Method for 3D Mixed-Element Meshes – Application to LES of Primary Liquid-Sheet Breakup
,”
Commun. Comput. Phys.
,
16
(
2
), pp.
403
439
.
31.
Olsson
,
E.
, and
Kreiss
,
G.
,
2005
, “
A Conservative Level Set Method for Two Phase Flow
,”
J. Comput. Phys.
,
210
(
1
), pp.
225
246
.
32.
Olsson
,
E.
,
Kreiss
,
G.
, and
Zahedi
,
S.
,
2007
, “
A Conservative Level Set Method for Two Phase Flow II
,”
J. Comput. Phys.
,
225
(
1
), pp.
785
807
.
33.
Arienti
,
M.
, and
Sussman
,
M.
,
2014
, “
An Embedded Level Set Method for Sharp-Interface Multiphase Simulations of Diesel Injectors
,”
Int. J. Multiphase Flow
,
59
, pp.
1
14
.
34.
Ki
,
H.
,
Mohanty
,
P. S.
, and
Mazumder
,
J.
,
2001
, “
Modelling of High-Density Laser-Material Interaction Using Fast Level Set Method
,”
J. Phys. D: Appl. Phys.
,
34
(
3
), pp.
364
372
.
35.
Salonitis
,
K.
,
D’Alvise
,
L.
,
Schoinochoritis
,
B.
, and
Chantzis
,
D.
,
2016
, “
Additive Manufacturing and Post-Processing Simulation: Laser Cladding Followed by High Speed Machining
,”
Int. J. Adv. Manuf. Technol.
,
85
(
9–12
), pp.
2401
2411
.
36.
Chen
,
Q.
,
Guillemot
,
G.
,
Gandin
,
C.-A.
, and
Bellet
,
M.
,
2017
, “
Three-Dimensional Finite Element Thermomechanical Modeling of Additive Manufacturing by Selective Laser Melting for Ceramic Materials
,”
Addit. Manuf.
,
16
, pp.
124
137
.
37.
Courtois
,
M.
,
Carin
,
M.
,
Masson
,
P. L.
,
Gaied
,
S.
, and
Balabane
,
M.
,
2013
, “
A New Approach to Compute Multi-reflections of Laser Beam in a Keyhole for Heat Transfer and Fluid Flow Modelling in Laser Welding
,”
J. Phys. D: Appl. Phys.
,
46
(
50
), p.
505305
.
38.
Zhang
,
Y.
,
Shen
,
Z.
, and
Ni
,
X.
,
2014
, “
Modeling and Simulation on Long Pulse Laser Drilling Processing
,”
Int. J. Heat Mass Transfer
,
73
, pp.
429
437
.
39.
Shen
,
H.
,
Feng
,
D.
, and
Yao
,
Z.
,
2017
, “
Modeling of Underwater Laser Drilling of Alumina
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041008
.
40.
Steen
,
W. M.
, and
Mazumder
,
J.
,
2010
,
Laser Material Processing
,
Springer
,
New York
.
41.
Johnson
,
P. B.
, and
Christy
,
R. W.
,
1974
, “
Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd
,”
Phys. Rev. B
,
9
(
12
), pp.
5056
5070
.
42.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Cambridge, UK
.
43.
Aune
,
R.
,
Battezzati
,
L.
,
Brooks
,
R.
,
Egry
,
I.
,
Fecht
,
H. J.
,
Garandet
,
J. P.
,
Mills
,
K. C.
, et al
,
2005
, “
Surface Tension and Viscosity of Industrial Alloys From Parabolic Flight Experiments – Results of the ThermoLab Project
,”
Microgravity Sci. Technol.
,
16
(
1
), pp.
11
14
.
44.
Rai
,
R.
,
Elmer
,
J. W.
,
Palmer
,
T. A.
, and
DebRoy
,
T.
,
2007
, “
Heat Transfer and Fluid Flow During Keyhole Mode Laser Welding of Tantalum, Ti–6Al–4V, 304L Stainless Steel and Vanadium
,”
J. Phys. D: Appl. Phys.
,
40
(
18
), pp.
5753
5766
.
45.
Ge
,
W.
,
Fuh
,
J. Y. H.
, and
Na
,
S. J.
,
2021
, “
Numerical Modelling of Keyhole Formation in Selective Laser Melting of Ti6Al4V
,”
J. Manuf. Processes
,
62
, pp.
646
654
.
46.
Hijam
,
J.
,
Gupta
,
R.
,
Vadali
,
M.
, and
Arora
,
A.
,
2022
, “
Modeling and Performance of Continuous Wave Laser Polishing of Electron Beam Melted Ti6Al4V
,”
Manuf. Lett.
,
33
, pp.
232
241
.
47.
Raghavan
,
A.
,
Wei
,
H. L.
,
Palmer
,
T. A.
, and
DebRoy
,
T.
,
2013
, “
Heat Transfer and Fluid Flow in Additive Manufacturing
,”
J. Laser Appl.
,
25
(
5
), p.
052006
.
48.
Kwon
,
H.
,
Baek
,
W.-K.
,
Kim
,
M.-S.
,
Shin
,
W.-S.
, and
Yoh
,
J. J.
,
2012
, “
Temperature-Dependent Absorptance of Painted Aluminum, Stainless Steel 304, and Titanium for 1.07 μm and 10.6 μm Laser Beams
,”
Opt. Lasers Eng.
,
50
(
2
), pp.
114
121
.
49.
Niu
,
C.
,
Zhu
,
T.
, and
Lv
,
Y.
,
2019
, “
Influence of Surface Morphology on Absorptivity of Light-Absorbing Materials
,”
Int. J. Photoenergy
,
2019
, pp.
1
9
.
50.
Noori Rahim Abadi
,
S. M. A.
,
Mi
,
Y.
,
Sikström
,
F.
, and
Choquet
,
I.
,
2022
, “
Modelling of Beam Energy Absorbed Locally in Conduction Mode Laser Metal Fusion
,”
J. Phys. D: Appl. Phys.
,
55
(
2
), p.
025301
.
51.
Hipp
,
D.
,
Mahrle
,
A.
, and
Beyer
,
E.
,
2019
, “
Beyond Fresnel: Absorption of Fibre Laser Radiation on Rough Stainless Steel Surfaces
,”
J. Phys. D: Appl. Phys.
,
52
(
35
), p.
355302
.
52.
Leinhard V
,
J. H.
, and
Leinhard IV
,
J. H.
,
2008
,
A Heat Transfer Textbook
,
Phlogiston Press
,
Cambridge, UK
.
You do not currently have access to this content.