Abstract

High-fidelity, data-driven models that can quickly simulate thermal behavior during additive manufacturing (AM) are crucial for improving the performance of AM technologies in multiple areas, such as part design, process planning, monitoring, and control. However, complexities of part geometries make it challenging for current models to maintain high accuracy across a wide range of geometries. In addition, many models report a low mean-square error (MSE) across the entire domain of a part. However, in each time-step, most areas of the domain do not experience significant changes in temperature, except for the regions near recent depositions. Therefore, the MSE-based fidelity measurement of the models may be overestimated. This article presents a data-driven model that uses the Fourier neural operator to capture the local temperature evolution during the AM process. Besides MSE, the model is also evaluated using the R2 metric, which places great weight on the regions where the temperature changes significantly than MSE. The model was trained and tested on numerical simulations based on the discontinuous Galerkin finite element method for the direct energy deposition AM process. The results shows that the model maintains 0.9830.999 R2 over geometries not included in the training data, which is higher than convolutional neural networks and graph convolutional neural networks we implemented, the two widely used architectures in data-driven predictive modeling.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Singamneni
,
S.
,
Yifan
,
L.
,
Hewitt
,
A.
,
Chalk
,
R.
,
Thomas
,
W.
, and
Jordison
,
D.
,
2019
, “
Additive Manufacturing for the Aircraft Industry: A Review
,”
J. Aeronaut. Aerosp. Eng
,
8
(
1
), pp.
351
371
.
2.
Sarvankar
,
S. G.
, and
Yewale
,
S. N.
,
2019
, “
Additive Manufacturing in Automobile Industry
,”
Int. J. Res. Aeronaut. Mech. Eng
,
7
(
4
), pp.
1
10
.
3.
Taşdemir
,
A.
, and
Nohut
,
S.
,
2021
, “
An Overview of Wire Arc Additive Manufacturing (WAAM) in Shipbuilding Industry
,”
Ships Offshore Struct.
,
16
(
7
), pp.
797
814
.
4.
Abdulhameed
,
O.
,
Al-Ahmari
,
A.
,
Ameen
,
W.
, and
Mian
,
S. H.
,
2019
, “
Additive Manufacturing: Challenges, Trends, and Applications
,”
Adv. Mech. Eng.
,
11
(
2
), p.
1687814018822880
.
5.
Mozaffar
,
M.
,
Liao
,
S.
,
Lin
,
H.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2021
, “
Geometry-Agnostic Data-Driven Thermal Modeling of Additive Manufacturing Processes Using Graph Neural Networks
,”
Addit. Manuf.
,
48
(
Part B
), p.
102449
.
6.
Ruiz
,
C.
,
Jafari
,
D.
,
Venkata Subramanian
,
V.
,
Vaneker
,
T. H.
,
Ya
,
W.
, and
Huang
,
Q.
,
2022
, “
Prediction and Control of Product Shape Quality for Wire and Arc Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
144
(
11
), p.
111005
.
7.
Glerum
,
J.
,
Bennett
,
J.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2021
, “
Mechanical Properties of Hybrid Additively Manufactured Inconel 718 Parts Created Via Thermal Control After Secondary Treatment Processes
,”
J. Mater. Process. Technol.
,
291
, p.
117047
.
8.
Kouraytem
,
N.
,
Li
,
X.
,
Tan
,
W.
,
Kappes
,
B.
, and
Spear
,
A. D.
,
2021
, “
Modeling Process–Structure–Property Relationships in Metal Additive Manufacturing: A Review on Physics-Driven Versus Data-Driven Approaches
,”
J. Phys.: Mater.
,
4
(
3
), p.
032002
.
9.
Luo
,
Q.
,
Yin
,
L.
,
Simpson
,
T. W.
, and
Beese
,
A. M.
,
2023
, “
Dataset of Process-Structure-Property Feature Relationship for Laser Powder Bed Fusion Additive Manufactured Ti-6Al-4V Material
,”
Data Brief
,
46
, p.
108911
.
10.
Popova
,
E.
,
Rodgers
,
T. M.
,
Gong
,
X.
,
Cecen
,
A.
,
Madison
,
J. D.
, and
Kalidindi
,
S. R.
,
2017
, “
Process-Structure Linkages Using a Data Science Approach: Application to Simulated Additive Manufacturing Data
,”
Integr. Mater. Manuf. Innovat.
,
6
(
1
), pp.
54
68
.
11.
Gordon
,
J.
,
Narra
,
S.
,
Cunningham
,
R.
,
Liu
,
H.
,
Chen
,
H.
,
Suter
,
R.
,
Beuth
,
J.
, and
Rollett
,
A.
,
2020
, “
Defect Structure Process Maps for Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
36
, p.
101552
.
12.
Fang
,
L.
,
Cheng
,
L.
,
Glerum
,
J. A.
,
Bennett
,
J.
,
Cao
,
J.
, and
Wagner
,
G. J.
,
2022
, “
Data-Driven Analysis of Process, Structure, and Properties of Additively Manufactured Inconel 718 Thin Walls
,”
npj Comput. Mater.
,
8
(
1
), pp.
1
15
.
13.
Thanki
,
A.
,
Goossens
,
L.
,
Ompusunggu
,
A. P.
,
Bayat
,
M.
,
Bey-Temsamani
,
A.
,
Van Hooreweder
,
B.
,
Kruth
,
J.-P.
, and
Witvrouw
,
A.
,
2022
, “
Melt Pool Feature Analysis Using a High-Speed Coaxial Monitoring System for Laser Powder Bed Fusion of Ti-6Al-4 V Grade 23
,”
Int. J. Adv. Manuf. Technol.
,
120
(
9
), pp.
6497
6514
.
14.
Cook
,
P. S.
, and
Murphy
,
A. B.
,
2020
, “
Simulation of Melt Pool Behaviour During Additive Manufacturing: Underlying Physics and Progress
,”
Addit. Manuf.
,
31
, p.
100909
.
15.
Wang
,
L.
,
Zhang
,
Y.
, and
Yan
,
W.
,
2020
, “
Evaporation Model for Keyhole Dynamics During Additive Manufacturing of Metal
,”
Phys. Rev. Appl.
,
14
(
6
), p.
064039
.
16.
Mukherjee
,
T.
, and
DebRoy
,
T.
,
2018
, “
Mitigation of Lack of Fusion Defects in Powder Bed Fusion Additive Manufacturing
,”
J. Manuf. Process.
,
36
, pp.
442
449
.
17.
Zinoviev
,
A.
,
Zinovieva
,
O.
,
Ploshikhin
,
V.
,
Romanova
,
V.
, and
Balokhonov
,
R.
,
2016
, “
Evolution of Grain Structure During Laser Additive Manufacturing. Simulation by a Cellular Automata Method
,”
Mater. Des.
,
106
, pp.
321
329
.
18.
Jayanath
,
S.
, and
Achuthan
,
A.
,
2018
, “
A Computationally Efficient Finite Element Framework to Simulate Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041009
.
19.
Nikam
,
S. H.
, and
Jain
,
N.
,
2019
, “
Modeling and Prediction of Residual Stresses in Additive Layer Manufacturing by Microplasma Transferred Arc Process Using Finite Element Simulation
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061003
.
20.
Dong
,
W.
,
Liang
,
X.
,
Chen
,
Q.
,
Hinnebusch
,
S.
,
Zhou
,
Z.
, and
To
,
A. C.
,
2021
, “
A New Procedure for Implementing the Modified Inherent Strain Method With Improved Accuracy in Predicting Both Residual Stress and Deformation for Laser Powder Bed Fusion
,”
Addit. Manuf.
,
47
, p.
102345
.
21.
Srivastava
,
S.
,
Garg
,
R. K.
,
Sachdeva
,
A.
, and
Sharma
,
V. S.
,
2023
, “
Distribution of Residual Stress in Wire-Arc Additively Manufactured Small-Scale Component: Single-Versus Multi-Level Heat Input
,”
ASME J. Manuf. Sci. Eng.
,
145
(
2
), p.
021008
.
22.
Lehmann
,
T.
,
Rose
,
D.
,
Ranjbar
,
E.
,
Ghasri-Khouzani
,
M.
,
Tavakoli
,
M.
,
Henein
,
H.
,
Wolfe
,
T.
, and
Jawad Qureshi
,
A.
,
2022
, “
Large-scale Metal Additive Manufacturing: a Holistic Review of the State of the Art and Challenges
,”
Int. Mater. Rev.
,
67
(
4
), pp.
410
459
.
23.
Nijhuis
,
B.
, and
Geijselaers
,
B.
,
2021
, “
Efficient Thermal Simulation of Large-Scale Metal Additive Manufacturing Using Hot Element Addition
,”
Comput. Struct.
,
245
, p.
106463
.
24.
Mozaffar
,
M.
,
Paul
,
A.
,
Al-Bahrani
,
R.
,
Wolff
,
S.
,
Choudhary
,
A.
,
Agrawal
,
A.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2018
, “
Data-Driven Prediction of the High-Dimensional Thermal History in Directed Energy Deposition Processes Via Recurrent Neural Networks
,”
Manuf. Lett.
,
18
, pp.
35
39
.
25.
Mozaffar
,
M.
,
Liao
,
S.
,
Jeong
,
J.
,
Xue
,
T.
, and
Cao
,
J.
,
2023
, “
Differentiable Simulation for Material Thermal Response Design in Additive Manufacturing Processes
,”
Addit. Manuf.
,
61
, p.
103337
.
26.
Sun
,
Z.
,
Ma
,
Y.
,
Ponge
,
D.
,
Zaefferer
,
S.
,
Jägle
,
E. A.
,
Gault
,
B.
,
Rollett
,
A. D.
, and
Raabe
,
D.
,
2022
, “
Thermodynamics-Guided Alloy and Process Design for Additive Manufacturing
,”
Nat. Commun.
,
13
(
1
), pp.
1
12
.
27.
Mahmoud
,
D.
,
Magolon
,
M.
,
Boer
,
J.
,
Elbestawi
,
M.
, and
Mohammadi
,
M. G.
,
2021
, “
Applications of Machine Learning in Process Monitoring and Controls of L-PBF Additive Manufacturing: A Review
,”
Appl. Sci.
,
11
(
24
), p.
11910
.
28.
AbouelNour
,
Y.
, and
Gupta
,
N.
,
2022
, “
In-Situ Monitoring of Sub-surface and Internal Defects in Additive Manufacturing: A Review
,”
Mater. Des.
,
222
, p.
111063
.
29.
Paul
,
A.
,
Mozaffar
,
M.
,
Yang
,
Z.
,
Liao
,
W.-k.
,
Choudhary
,
A.
,
Cao
,
J.
, and
Agrawal
,
A.
,
2019
, “
A Real-Time Iterative Machine Learning Approach for Temperature Profile Prediction in Additive Manufacturing Processes
,”
2019 IEEE International Conference on Data Science and Advanced Analytics
,
Washington, DC
,
Oct. 5–8
, IEEE, pp.
541
550
.
30.
Stathatos
,
E.
, and
Vosniakos
,
G.-C.
,
2019
, “
Real-Time Simulation for Long Paths in Laser-Based Additive Manufacturing: A Machine Learning Approach
,”
Int. J. Adv. Manuf. Technol.
,
104
(
5
), pp.
1967
1984
.
31.
Roy
,
M.
, and
Wodo
,
O.
,
2020
, “
Data-Driven Modeling of Thermal History in Additive Manufacturing
,”
Addit. Manuf.
,
32
, p.
101017
.
32.
Ness
,
K. L.
,
Paul
,
A.
,
Sun
,
L.
, and
Zhang
,
Z.
,
2022
, “
Towards a Generic Physics-Based Machine Learning Model for Geometry Invariant Thermal History Prediction in Additive Manufacturing
,”
J. Mater. Process. Technol.
,
302
, p.
117472
.
33.
Xu
,
X.
,
Willis
,
K. D.
,
Lambourne
,
J. G.
,
Cheng
,
C.-Y.
,
Jayaraman
,
P. K.
, and
Furukawa
,
Y.
,
2022
,
SkexGen: Autoregressive Generation of CAD Construction Sequences With Disentangled Codebooks
, arXiv Preprint arXiv:2207.04632.
34.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Netw.
,
2
(
5
), pp.
359
366
.
35.
Chen
,
T.
, and
Chen
,
H.
,
1995
, “
Universal Approximation to Nonlinear Operators by Neural Networks With Arbitrary Activation Functions and Its Application to Dynamical Systems
,”
IEEE Trans. Neural Netw.
,
6
(
4
), pp.
911
917
.
36.
Bhattacharya
,
K.
,
Hosseini
,
B.
,
Kovachki
,
N. B.
, and
Stuart
,
A. M.
,
2020
, “
Model Reduction and Neural Networks for Parametric PDEs
,” arXiv Preprint arXiv:2005.03180.
37.
Li
,
Z.
,
Kovachki
,
N.
,
Azizzadenesheli
,
K.
,
Liu
,
B.
,
Bhattacharya
,
K.
,
Stuart
,
A.
, and
Anandkumar
,
A.
,
2020
, “
Neural Operator: Graph Kernel Network for Partial Differential Equations
,” arXiv Preprint arXiv:2003.03485.
38.
Lu
,
L.
,
Jin
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Deeponet: Learning Nonlinear Operators for Identifying Differential Equations Based on the Universal Approximation Theorem of operators
,” arXiv Preprint arXiv:1910.03193.
39.
Li
,
Z.
,
Kovachki
,
N.
,
Azizzadenesheli
,
K.
,
Liu
,
B.
,
Bhattacharya
,
K.
,
Stuart
,
A.
, and
Anandkumar
,
A.
,
2020
, “
Fourier Neural Operator for Parametric Partial Differential Equations
,” arXiv Preprint arXiv:2010.08895.
40.
Patel
,
R. G.
,
Trask
,
N. A.
,
Wood
,
M. A.
, and
Cyr
,
E. C.
,
2021
, “
A Physics-Informed Operator Regression Framework for Extracting Data-Driven Continuum Models
,”
Comput. Methods. Appl. Mech. Eng.
,
373
, p.
113500
.
41.
Van Den Oord
,
A.
, and
Vinyals
,
O.
,
2017
, “Neural Discrete Representation Learning,”
Advances in Neural Information Processing Systems
, Vol.
30
,
Curran Associates, Inc
.
42.
To
,
A. C.
,
Liang
,
X.
, and
Dong
,
W.
,
2023
, “Modified Inherent Strain Method for Predicting Residual Deformation and Stress in Metal Additive Manufacturing,”
Addit. Manuf. Technol.: Des., Optim. Model.
,
Wiley Online Library
, pp.
219
265
.
43.
Du
,
J.
,
Zhang
,
S.
,
Wu
,
G.
,
Moura
,
J. M.
, and
Kar
,
S.
,
2017
, “
Topology Adaptive Graph Convolutional Networks
,” arXiv Preprint arXiv:1710.10370.
44.
Zhuang
,
F.
,
Qi
,
Z.
,
Duan
,
K.
,
Xi
,
D.
,
Zhu
,
Y.
,
Zhu
,
H.
,
Xiong
,
H.
, and
He
,
Q.
,
2020
, “
A Comprehensive Survey on Transfer Learning
,”
Proc. IEEE
,
109
(
1
), pp.
43
76
.
45.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Physics Informed Deep Learning (Part i): Data-Driven Solutions of Nonlinear Partial Differential Equations
,” arXiv Preprint arXiv:1711.10561.
46.
Zhu
,
Q.
,
Liu
,
Z.
, and
Yan
,
J.
,
2021
, “
Machine Learning for Metal Additive Manufacturing: Predicting Temperature and Melt Pool Fluid Dynamics Using Physics-Informed Neural Networks
,”
Comput. Mech.
,
67
(
2
), pp.
619
635
.
47.
Wang
,
R.
,
Behandish
,
M.
, and
Matei
,
I.
,
2023
, “
Model Order Reduction of Physical Systems
,” US Patent App. 17/386,674.
48.
Wang
,
R.
, and
Behandish
,
M.
,
2022
, “
Surrogate Modeling for Physical Systems With Preserved Properties and Adjustable Tradeoffs
, arXiv Preprint arXiv:2202.01139.
You do not currently have access to this content.