Abstract

Surface roughness is a critical indicator to evaluate the quality of 4H-SiC grinding surfaces. Determining surface roughness experimentally is a time-consuming and laborious process, and developing a reliable model for predicting surface roughness is a key challenge in 4H-SiC grinding. However, the existing models for surface roughness in wafer rotational grinding fail to yield reasonable results because they do not adequately consider the processing parameters and material characteristics. In this study, we proposed a new analytical model for predicting surface roughness in 4H-SiC wafer rotational grinding, which comprehensively incorporates the grinding conditions and material characteristics of brittle substrate. This model derives and calculates the material's elastic recovery coefficient based on contact mechanics and elastic contact theory. Subsequently, we modified the grain depth-of-cut model by incorporating elastic recovery coefficient. Additionally, we analyze the distribution of the failure mode (ductile or brittle) on the surface of a material when the depth at which the material is cut instead follows a random distribution known as the Rayleigh distribution. To validate the accuracy of the established model, a series of grinding experiments are conducted using various grain depth-of-cut to produce 4H-SiC wafers with different surface roughness values. These results are then compared with those predicted by both this model and the traditional model. The findings demonstrate that the calculated data obtained from the proposed model exhibit better agreement with the measured data. This research addresses the need for an improved surface roughness model in 4H-SiC wafer rotational grinding.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Siddiqui
,
A.
,
Khosa
,
R. Y.
, and
Usman
,
M.
,
2021
, “
High-k Dielectrics for 4H-Silicon Carbide: Present Status and Future Perspectives
,”
J. Mater. Chem. C
,
9
(
15
), pp.
5055
5081
.
2.
Brinksmeier
,
E.
,
Mutlugunes
,
Y.
,
Klocke
,
F.
,
Aurich
,
J. C.
,
Shore
,
P.
, and
Ohmori
,
H.
,
2010
, “
Ultra-Precision Grinding
,”
CIRP Ann.
,
59
(
2
), pp.
652
671
.
3.
Pei
,
Z. J.
,
Fisher
,
G. R.
, and
Liu
,
J.
,
2008
, “
Grinding of Silicon Wafers: A Review From Historical Perspectives
,”
Int. J. Mach. Tools Manuf.
,
48
(
12–13
), pp.
1297
1307
.
4.
Yang
,
Y.
,
De Munck
,
K.
,
Teixeira
,
R. C.
,
Swinnen
,
B.
,
Verlinden
,
B.
, and
De Wolf
,
I.
,
2008
, “
Process Induced Sub-Surface Damage in Mechanically Ground Silicon Wafers
,”
Semicond. Sci. Technol.
,
23
(
7
), p.
075038
.
5.
Shi
,
F.
,
Lv
,
Q.
,
Zhou
,
P.
, and
Bai
,
Q.
,
2024
, “
Polarized Laser Scattering Detection of Low-Density and Micron-Scale Subsurface Cracks in Silicon Wafer
,”
Precis. Eng.
,
86
, pp.
75
81
.
6.
Xiao
,
X. Z.
,
Li
,
G.
, and
Li
,
Z. H.
,
2021
, “
Prediction of the Surface Roughness in Ultrasonic Vibration-Assisted Grinding of Dental Zirconia Ceramics Based on a Single-Diamond Grit Model
,”
Micromachines
,
12
(
5
), p.
543
.
7.
He
,
C. L.
,
Zong
,
W. J.
,
Cao
,
Z. M.
, and
Sun
,
T.
,
2015
, “
Theoretical and Empirical Coupled Modeling on the Surface Roughness in Diamond Turning
,”
Mater. Des.
,
82
, pp.
216
222
.
8.
Agrawal
,
A.
,
Goel
,
S.
,
Bin Rashid
,
W.
, and
Price
,
M.
,
2015
, “
Prediction of Surface Roughness During Hard Turning of AISI 4340 Steel (69 HRC)
,”
Appl. Soft Comput.
,
30
, pp.
279
286
.
9.
Zhu
,
C. M.
,
Gu
,
P.
,
Wu
,
Y. Y.
,
Liu
,
D. H.
, and
Wang
,
X. K.
,
2019
, “
Surface Roughness Prediction Model of SiCp/Al Composite in Grinding
,”
Int. J. Mech. Sci.
,
155
, pp.
98
109
.
10.
Guo
,
W. C.
,
Wu
,
C. J.
,
Ding
,
Z. S.
, and
Zhou
,
Q. Z.
,
2021
, “
Prediction of Surface Roughness Based on a Hybrid Feature Selection Method and Long Short-Term Memory Network in Grinding
,”
Int. J. Adv. Manuf. Technol.
,
112
(
9–10
), pp.
2853
2871
.
11.
Hecker
,
R. L.
, and
Liang
,
S. Y.
,
2003
, “
Predictive Modeling of Surface Roughness in Grinding
,”
Int. J. Mach. Tools Manuf.
,
43
(
8
), pp.
755
761
.
12.
Hecker
,
R. L.
,
Liang
,
S. Y.
,
Wu
,
X. J.
,
Xia
,
P.
, and
Jin
,
D. G. W.
,
2007
, “
Grinding Force and Power Modeling Based on Chip Thickness Analysis
,”
Int. J. Adv. Manuf. Technol
,,
33
(
5–6
), pp.
449
459
.
13.
Agarwal
,
S.
, and
Rao
,
P. V.
,
2010
, “
Modeling and Prediction of Surface Roughness in Ceramic Grinding
,”
Int. J. Mach. Tools Manuf.
,
50
(
12
), pp.
1065
1076
.
14.
Wu
,
C. J.
,
Li
,
B. Z.
,
Liu
,
Y.
, and
Liang
,
S. Y.
,
2017
, “
Surface Roughness Modeling for Grinding of Silicon Carbide Ceramics Considering co-Existence of Brittleness and Ductility
,”
Int. J. Mech. Sci.
,
133
, pp.
167
177
.
15.
Zhang
,
Z. Y.
,
Huo
,
Y. X.
, and
Guo
,
D. M.
,
2013
, “
A Model for Nanogrinding Based on Direct Evidence of Ground Chips of Silicon Wafers
,”
Sci. China Technol. Sci.
,
56
(
9
), pp.
2099
2108
.
16.
Gopal
,
A. V.
, and
Rao
,
P. V.
,
2004
, “
A New Chip-Thickness Model for Performance Assessment of Silicon Carbide Grinding
,”
Int. J. Adv. Manuf. Technol
,,
24
(
11–12
), pp.
816
820
.
17.
Zhang
,
Y.
,
Kang
,
R. K.
,
Gao
,
S.
,
Huang
,
J. X.
, and
Zhu
,
X. L.
,
2021
, “
A New Model of Grit Cutting Depth in Wafer Rotational Grinding Considering the Effect of the Grinding Wheel, Workpiece Characteristics, and Grinding Parameters
,”
Precis. Eng.
,
72
, pp.
461
468
.
18.
Li
,
C.
,
Zhang
,
Q.
,
Zhang
,
Y. B.
,
Zhang
,
F. H.
,
Wang
,
X.
, and
Dong
,
G. J.
,
2020
, “
Nanoindentation and Nanoscratch Tests of YAG Single Crystals: An Investigation Into Mechanical Properties, Surface Formation Characteristic, and Theoretical Model of Edge-Breaking Size
,”
Ceram. Int.
,
46
(
3
), pp.
3382
3393
.
19.
Li
,
Z. P.
,
Zhang
,
F. H.
,
Luo
,
X. C.
, and
Cai
,
Y. K.
,
2019
, “
Fundamental Understanding of the Deformation Mechanism and Corresponding Behavior of RB-SiC Ceramics Subjected to Nano-Scratch in Ambient Temperature
,”
Appl. Surf. Sci.
,
469
, pp.
674
683
.
20.
Chai
,
P.
,
Li
,
S. J.
,
Li
,
Y.
, and
Yin
,
X. C.
,
2020
, “
Study on Damage of 4H-SiC Single Crystal Through Indentation and Scratch Testing in Micro-Nano Scales
,”
Appl. Sci.
,
10
(
17
), p.
5944
.
21.
Agarwal
,
S.
, and
Rao
,
P. V.
,
2005
, “
A New Surface Roughness Prediction Model for Ceramic Grinding
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
219
(
11
), pp.
811
821
.
22.
Younis
,
M. A.
, and
Alawi
,
H.
,
1984
, “
Probabilistic Analysis of the Surface Grinding Process
,”
Trans. Can. Soc. Mech. Eng.
,
8
(
4
), pp.
208
213
.
23.
Zhang
,
L. X.
,
Chen
,
P.
,
An
,
T.
,
Dai
,
Y. W.
, and
Qin
,
F.
,
2019
, “
Analytical Prediction for Depth of Subsurface Damage in Silicon Wafer Due to Self-Rotating Grinding Process
,”
Curr. Appl. Phys.
,
19
(
5
), pp.
570
581
.
24.
Osa
,
J. L.
,
Sanchez
,
J. A.
,
Ortega
,
N.
,
Iordanoff
,
I.
, and
Charles
,
J. L.
,
2016
, “
Discrete-Element Modelling of the Grinding Contact Length Combining the Wheel-Body Structure and the Surface-Topography Models
,”
Int. J. Mach. Tools Manuf.
,
110
, pp.
43
54
.
25.
Huang
,
H.
,
Lawn
,
B. R.
,
Cook
,
R. F.
, and
Marshall
,
D. B.
,
2020
, “
Critique of Materials-Based Models of Ductile Machining in Brittle Solids
,”
J. Am. Ceram. Soc.
,
103
(
11
), pp.
6096
6100
.
26.
Gao
,
S.
,
Li
,
T. R.
,
Lang
,
H. Y.
, and
Yang
,
X.
,
2022
, “
Prediction for Subsurface Damage Depth of Silicon Wafers in Workpiece Rotational Grinding
,”
Opt. Precis. Eng.
,
30
(
17
), pp.
2077
2087
.
27.
Gao
,
S.
,
Wang
,
Z. G.
,
Kang
,
R. K.
,
Dong
,
Z. G.
, and
Zhang
,
B.
,
2016
, “
Model of Grain Depth of Cut in Wafer Rotation Grinding Method for Silicon Wafers
,”
Chin. J. Mech. Eng.
,
52
(
17
), pp.
86
93
.
28.
Zhang
,
F. H.
,
Meng
,
B. B.
,
Geng
,
Y. Q.
, and
Zhang
,
Y.
,
2016
, “
Study on the Machined Depth When Nanoscratching on 6H-SiC Using Berkovich Indenter: Modelling and Experimental Study
,”
Appl. Surf. Sci.
,
368
, pp.
449
455
.
29.
Li
,
C.
,
Zhang
,
F. H.
,
Wang
,
X.
, and
Rao
,
X. S.
,
2018
, “
Repeated Nanoscratch and Double Nanoscratch Tests of Lu2O3 Transparent Ceramics: Material Removal and Deformation Mechanism, and Theoretical Model of Penetration Depth
,”
J. Eur. Ceram. Soc.
,
38
(
2
), pp.
705
718
.
30.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge Cambridgeshire; New York
.
31.
Lee
,
J. M.
,
Lee
,
C. J.
,
Lee
,
K. H.
, and
Kim
,
B. M.
,
2012
, “
Effects of Elastic-Plastic Properties of Materials on Residual Indentation Impressions in Nano-Indentation Using Sharp Indenter
,”
Trans. Nonferrous Met. Soc. China
,
22
, pp.
S585
S595
.
32.
Zhang
,
S. H.
,
Guo
,
X. G.
,
Jin
,
Z. J.
,
Kang
,
R. K.
,
Guo
,
D. M.
, and
Tang
,
W. C.
,
2020
, “
Surface Morphologies and Corresponding Hardness Evolution During Nanoscratching
,”
J. Mater. Res. Technol.
,
9
(
3
), pp.
3179
3189
.
33.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
34.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(
1
), pp.
3
20
.
35.
Mahmoud
,
T.
,
Tamaki
,
J.
, and
Yan
,
J.
,
2003
, “
Three-Dimensional Shape Modeling of Diamond Abrasive Grains Measured by a Scanning Laser Microscope
,”
Key Eng. Mater.
,
238–239
, pp.
131
136
.
36.
Lin
,
B.
,
Zhou
,
P.
,
Wang
,
Z. G.
,
Yan
,
Y.
,
Kang
,
R. K.
, and
Guo
,
D. M.
,
2018
, “
Analytical Elastic Plastic Cutting Model for Predicting Grain Depth-of-Cut in Ultrafine Grinding of Silicon Wafer
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121001
.
37.
Herman
,
D.
, and
Krzos
,
J.
,
2009
, “
Influence of Vitrified Bond Structure on Radial Wear of cBN Grinding Wheels
,”
J. Mater. Process. Technol.
,
209
(
14
), pp.
5377
5386
.
38.
Bhattacharya
,
S.
,
Kundu
,
R.
,
Bhattacharya
,
K.
,
Poddar
,
A.
, and
Roy
,
D.
,
2019
, “
Micromechanical Hardness Study and the Effect of Reverse Indentation Size on Heat-Treated Silver Doped Zinc-Molybdate Glass Nanocomposites
,”
J. Alloys Compd.
,
770
, pp.
136
142
.
39.
Gong
,
J. H.
, and
Li
,
Y.
,
2000
, “
An Energy-Balance Analysis for the Size Effect in Low-Load Hardness Testing
,”
J. Mater. Sci.
,
35
(
1
), pp.
209
213
.
40.
Xue
,
Z.
,
Huang
,
Y.
,
Hwang
,
K. C.
, and
Li
,
M.
,
2002
, “
The Influence of Indenter tip Radius on the Micro-Indentation Hardness
,”
ASME J. Eng. Mater. Technol.
,
124
(
3
), pp.
371
379
.
41.
Li
,
N.
,
Liu
,
L.
,
Chan
,
K. C.
,
Chen
,
Q.
, and
Pan
,
J.
,
2009
, “
Deformation Behavior and Indentation Size Effect of Au Ag Pd Cu Si Bulk Metallic Glass at Elevated Temperatures
,”
Intermetallics
,
17
(
4
), pp.
227
230
.
42.
Hong
,
L.
, and
Bradt
,
R. C.
,
1996
, “
The Effect of Indentation-Induced Cracking on the Apparent Microhardness
,”
J. Mater. Sci.
,
31
(
4
), pp.
1065
1070
.
43.
Schiffmann
,
K. I.
,
2011
, “
Determination of Fracture Toughness of Bulk Materials and Thin Films by Nanoindentation: Comparison of Different Models
,”
Philos. Mag.
,
91
(
7–9
), pp.
1163
1178
.
44.
Zhang
,
L. C.
, and
Tanaka
,
H.
,
1997
, “
Towards a Deeper Understanding of Wear and Friction on the Atomic Scale—A Molecular Dynamics Analysis
,”
Wear
,
211
(
1
), pp.
44
53
.
45.
Goel
,
S.
,
2014
, “
The Current Understanding on the Diamond Machining of Silicon Carbide
,”
J. Phys. D: Appl. Phys.
,
47
(
24
), p.
243001
.
46.
Lee
,
S. H.
,
2012
, “
Analysis of Ductile Mode and Brittle Transition of AFM Nanomachining of Silicon
,”
Int. J. Mach. Tools Manuf.
,
61
, pp.
71
79
.
47.
Ajjarapu
,
S. K.
,
Patten
,
J. A.
,
Cherukuri
,
H.
, and
Brand
,
C.
,
2004
, “
Numerical Simulations of Ductile Regime Machining of Silicon Nitride Using the Drucker-Prager Material Model
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
218
(
6
), pp.
577
582
.
48.
Huo
,
F. W.
,
Guo
,
D. M.
,
Kang
,
R. K.
, and
Feng
,
G.
,
2012
, “
Nanogrinding of SiC Wafers With High Flatness and Low Subsurface Damage
,”
Trans. Nonferrous Met. Soc. China
,
22
(
12
), pp.
3027
3033
.
49.
Zhou
,
L.
,
Ebina
,
Y.
,
Wu
,
K.
,
Shimizu
,
J.
,
Onuki
,
T.
, and
Ojima
,
H.
,
2017
, “
Theoretical Analysis on Effects of Grain Size Variation
,”
Precis. Eng.
,
50
, pp.
27
31
.
50.
Robbins
,
H. E.
,
1945
, “
On the Measure of a Random Set. 2
,”
Ann. Math. Stat.
,
16
(
4
), pp.
342
347
.
You do not currently have access to this content.