Abstract

Warm forming holds significant potential in shaping challenging materials due to its comprehensive advantages compared to cold and hot forming. Effective heating is crucial for precise warm forming processes. This study explored an innovative warm air bending technique employing an online local contact heating method. Heat transfer during the preheating stage and the air bending of AZ31B sheets were investigated through experiments and finite element analysis at temperatures ranging from room temperature (24 °C) to 250 °C, considering the thermomechanical coupling effect. The results indicate a significant increase in the bending center angle, advancing from 69.8 deg to more than 119 deg as the heating temperature rises from room temperature to 250 °C. Fractures were effectively eliminated when the sheet heating temperatures exceeded 150 °C. Simultaneously, as the localized heating temperature increases, a corresponding decrease in the rebound angle is observed, reducing from 10.6 deg to 2.3 deg. The findings validate the feasibility of warm air bending using online local contact heating in industrial applications, with regard to forming quality and production efficiency.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Kim
,
H.
,
Nargundkar
,
N.
, and
Altan
,
T.
,
2007
, “
Prediction of Bend Allowance and Springback in Air Bending
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
342
351
.
2.
Iacono
,
C.
,
Sinke
,
J.
, and
Benedictus
,
R.
,
2010
, “
Prediction of Minimum Bending Ratio of Aluminum Sheets From Tensile Material Properties
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021001
.
3.
Wong
,
T. W.
,
Hadadzadeh
,
A.
, and
Wells
,
M. A.
,
2018
, “
High Temperature Deformation Behavior of Extruded AZ31B Magnesium Alloy
,”
J. Mater. Process. Technol.
,
251
, pp.
360
368
.
4.
Sen
,
N.
,
Durucan
,
G.
,
Elkoca
,
O.
, and
Uygur
,
İ
,
2019
, “
Mechanical Properties of Ultra-High-Strength Steels at Elevated Temperatures
,”
Ironmak. Steelmak.
,
46
(
10
), pp.
944
952
.
5.
Bruni
,
C.
,
Forcellese
,
A.
,
Gabrielli
,
F.
, and
Simoncini
,
M.
,
2006
, “
Air Bending of AZ31 Magnesium Alloy in Warm and Hot Forming Conditions
,”
J. Mater. Process. Technol.
,
177
(
1–3
), pp.
373
376
.
6.
Salandro
,
W. A.
,
Bunget
,
C.
, and
Mears
,
L.
,
2011
, “
Electroplastic Modeling of Bending Stainless Steel Sheet Metal Using Energy Methods
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041008
.
7.
Kim
,
K. Y.
,
Park
,
S.
,
Lee
,
E. H.
, and
Kang
,
Y. H.
,
2020
, “
An Infrared Local Heat-Treatment Method to Improve Local Formability of Forming and Trimming Processes
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
967
(
1
), p.
012033
.
8.
Vorkov
,
V.
,
Arola
,
A.-M.
,
Larkiola
,
J.
,
Vandepitte
,
D.
, and
Duflou
,
J. R.
,
2018
, “
Influence of Radiant Heating on Air Bending
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1–4
), pp.
1421
1429
.
9.
Vorkov
,
V.
,
García
,
A. T.
, and
Duflou
,
J. R.
,
2020
, “
Bending Parameters in Heat Assisted Air Bending of High Strength Steels
,”
Proc. Manuf.
,
47
, pp.
1314
1318
.
10.
Deng
,
L.
,
Wang
,
X.
,
Jin
,
J.
, and
Xia
,
L.
,
2017
, “
Springback and Hardness of Aluminum Alloy Sheet Part Manufactured by Warm Forming Process Using Non-Isothermal Dies
,”
Procedia Eng.
,
207
, pp.
2388
2393
.
11.
Palumbo
,
G.
, and
Tricarico
,
L.
,
2007
, “
Numerical and Experimental Investigations on the Warm Deep Drawing Process of Circular Aluminum Alloy Specimens
,”
J. Mater. Process. Tech.
,
184
(
1–3
), pp.
115
123
.
12.
Sen
,
N.
,
2019
, “
Experimental Investigation of the Formability of Ultrahigh-Strength Sheet Material Using Local Heat Treatment
,”
Ironmak. Steelmak.
,
47
(
2
), pp.
93
99
.
13.
Rustom
,
S.
,
Paudel
,
Y. R.
,
Mujahid
,
S.
,
Cagle
,
M.
,
Anantwar
,
P.
,
Hazeli
,
K.
,
Moser
,
R.
,
Paliwal
,
B.
,
Rhee
,
H.
,
El Kadiri
,
H.
, and
Barrett
,
C. D.
,
2023
, “
Manufacturing Strategies to Mitigate Deformation Twinning in Magnesium
,”
ASME Open J. Engineering
,
2
, p.
021001
.
14.
Wang
,
Z.
,
Gu
,
R.
,
Chen
,
S.
,
Wang
,
W.
, and
Wei
,
X.
,
2018
, “
Effect of Upper-die Temperature on the Formability of AZ31B Magnesium Alloy Sheet in Stamping
,”
J. Mater. Process. Technol.
,
275
, pp.
180
190
.
15.
Chen
,
F.-K.
,
Huang
,
T.-B.
, and
Chang
,
C.-K.
,
2003
, “
Deep Drawing of Square Cups With Magnesium Alloy AZ31 Sheets
,”
Int. J Mach. Tools Manuf.
,
43
(
15
), pp.
1553
1559
.
16.
Doege
,
E.
, and
Dröder
,
K.
,
2001
, “
Sheet Metal Forming of Magnesium Wrought Alloys—Formability and Process Technology
,”
J. Mater. Process. Technol.
,
115
(
1
), pp.
14
19
.
17.
Paisarn
,
R.
,
Yugi
,
N.
, and
Koga
,
N.
,
2005
, “
Air Bending of AZ31 Magnesium Alloy Sheets
,”
J. Jpn. Inst. Light Met.
,
55
(
4
), pp.
181
185
.
18.
Lu
,
Y.
,
Li
,
Y. B.
,
Zhang
,
Y.
, and
Dong
,
L.
,
2022
, “
Manufacture of Al/CF/PEEK Curved Beams by Hot Stamping Forming Process
,”
Mater. Manuf. Process.
,
37
(
14
), pp.
1597
1609
.
19.
Geng
,
H. C.
,
Zhang
,
X. L.
,
Wang
,
Y. P.
,
Wang
,
Z. J.
, and
Zhang
,
Y. S.
,
2022
, “
Warm and Hot Stamping of High-Strength Aluminum Alloy Sheets Using Contact Heating
,”
Mech. Adv. Mater. Struct.
31
(
9
), pp.
1952
1961
.
20.
Wen
,
T.
,
Li
,
G. N.
,
Zhang
,
L. Z.
,
Zhou
,
Y.
,
Zheng
,
Y.
,
Yang
,
F.
, and
Wang
,
X.
“Warm Air Bending of High-Strength Steel Sheets Using an Online Local Contact Heating Device and Method,” Chinese Patent No. 202111327616.6, Nov. 10, 2021.
21.
Yuan
,
X. L.
,
2001
, “Magnesium Alloy,”
China Aeronautical Materials Handbook
,
G. L.
Liu
, and
J.
Qiang
, eds.,
Standards Press of China
,
Beijing, China
, p.
464
.
22.
Niu
,
T.
,
2009
, “
Determination of the Contact Thermal Conductivity Coefficient Based on the Thermal Deformation Conditions of 45# Steel
,” Master thesis, Taiyuan University of Science and Technology, Taiyuan, Shanxi, China, p.
25
.
23.
Jiao
,
J. K.
, and
Wang
,
X. B.
,
2007
, “
Temperature Distribution of Moving Quartz Glass Heated by CO2 Laser
,”
High Power Laser Particle Beams
,
19
(
1
), pp.
1
4
.
24.
Standardization Administration of the People's Repub
,
2010
,
GB/T 232-2010 Metallic Materials-Bend Test
,
Standards Press of China
,
Beijing, China
.
25.
Yang
,
H.
,
Wang
,
M.
,
Guo
,
L. G.
, and
Sun
,
Z. C.
,
2009
, “
3D Coupled Thermo-Mechanical FE Modeling of Blank Size Effects on the Uniformity of Strain and Temperature Distributions During Hot Rolling of Titanium Alloy Large Rings
,”
Comput. Mater. Sci.
,
44
(
2
), pp.
611
621
.
26.
Merklein
,
M.
,
Lechler
,
J.
, and
Stoehr
,
T.
,
2009
, “
Investigations on the Thermal Behavior of Ultra High Strength Boron Manganese Steels Within Hot Stamping
,”
Int. J. Mater. Form.
,
2
(
S1
), pp.
259
262
.
27.
Merklein
,
M.
, and
Lechler
,
J.
,
2008
, “
Determination of Material and Process Characteristics for Hot Stamping Processes of Quenchenable Ultra High Strength Steels With Respect to a FE-Based Process Design
,”
Sae. Int. J. Mater. Manu.
,
1
(
1
), pp.
411
426
.
28.
Bai
,
Q.
,
Lin
,
J.
,
Zhan
,
L.
,
Dean
,
T. A.
,
Balint
,
D. S.
, and
Zhang
,
Z.
,
2012
, “
An Efficient Closed-Form Method for Determining Interfacial Heat Transfer Coefficient in Metal Forming
,”
Int. J. Mach. Tool. Manuf.
,
56
, pp.
102
110
.
29.
Zhang
,
Z.
,
Yang
,
H.
,
Li
,
H.
,
Tao
,
Z.
, and
Wang
,
D.
,
2014
, “
Thermo-Mechanical Coupled 3D-FE Modeling of Heat Rotary Draw Bending for Large-Diameter Thin-Walled CP-Ti Tube
,”
Int. J. Adv. Manuf. Tech.
,
72
(
9–12
), pp.
1187
1203
.
30.
Fei
,
F.
,
Huang
,
S.
,
Meng
,
Z.
,
Hu
,
J.
,
Lei
,
Y.
,
Zhou
,
M.
, and
Yang
,
Z.
,
2014
, “
A Constitutive and Fracture Model for AZ31B Magnesium Alloy in the Tensile State
,”
Mater. Sci. Eng. A Struct.
,
594
, pp.
334
343
.
31.
Fan
,
Y. F.
,
Wang
,
Q. D.
,
Ning
,
J. S.
,
Chen
,
J.
, and
Ji
,
W.
,
2010
, “
Experimental Measure of Parameters: The Johnson–Cook Material Model of Extruded Mg–Gd–Y Series Alloy
,”
ASME J. Appl. Mech.
,
77
(
5
), p.
051902
.
32.
Shafieizad
,
A. H.
,
Zarei-Hanzaki
,
A.
,
Ghambari
,
M.
, and
Abbasi-Bani
,
A.
,
2015
, “
High Temperature Flow Behavior and Microstructure of Al-Cu/Mg2Si Metal Matrix Composite
,”
J. Eng. Mater.
,
137
(
2
), p.
021006
.
33.
Nguyen
,
D.-T.
,
Yang
,
S.-H.
,
Jung
,
D.-W.
,
Banh
,
T.-L.
, and
Kim
,
Y.-S.
,
2012
, “
A Study on Material Modeling to Predict Spring-Back in V-Bending of AZ31 Magnesium Alloy Sheet at Various Temperatures
,”
Int. J. Adv. Manuf. Technol.
,
62
(
5–8
), pp.
551
562
.
34.
Elkhateeb
,
M. G.
, and
Shin
,
Y. C.
,
2019
, “
Investigation of the Machining Behavior of Ti6Al4 V/TiC Composites During Conventional and Laser-Assisted Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
5
), p.
051001
.
You do not currently have access to this content.