Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Wafer quality control is one of the important processes to improve the yield rate of semiconductor products. Profile quality and defects in the wafer are two key factors that should be taken into consideration. In this research, we introduce a method that measures the profile of the upper surface and the thickness of the wafer at the same time using an optical fiber cascaded Fabry–Pérot interferometer working at wavelength of 1550 nm. Therefore, the 3D profile of the wafer can be reconstructed directly. Testing results show that both accuracy and precision of the Fabry–Pérot interferometer are within a nanometer scale. Defects, especially those embedded inside the wafer, will be detected by monitoring the leaky field with treating wafers as slab waveguides. With the leaky field detection, defects on the lower surface of the wafer were successfully detected by monitoring the leaky field above the upper surface of the wafer. Compared with traditional methods such as radiographic testing or computed tomography testing, the proposed methods provide a cost-effective alternative for wafer quality evaluation.

References

1.
Lu
,
K.
,
Wang
,
Z.
,
Chun
,
H.
, and
Lee
,
C.
,
2023
, “
Curved-Edge Diffractive Fringe Pattern Analysis for Wafer Edge Metrology and Inspection
,”
Metrology, Inspection, and Process Control XXXVII
,
San Jose, CA
,
Apr. 27
, SPIE, pp.
105
106
.
2.
Chun
,
H.
,
Wang
,
J.
,
Kim
,
J.
, and
Lee
,
C.
,
2023
, “
Wafer Particle Inspection Technique Using Computer Vision Based on a Color Space Transform Model
,”
Int. J. Adv. Manuf. Technol.
,
127
(
11
), pp.
5063
5071
.
3.
Nishi
,
Y.
, and
Doering
,
R.
,
2000
,
Handbook of Semiconductor Manufacturing Technology
,
CRC Press
,
New York
.
4.
Mayyas
,
M.
,
Wafer Surface Reconstruction and Characterization for Motion Compensation in a Femtosecond Laser Micromachining System
,
M.S., The University of Texas at Arlington
,
TX
. https://www.proquest.com/docview/305060376/abstract/D89FCB37CC654159PQ/1.
5.
Sherrington
,
I.
, and
Smith
,
E.
,
1988
, “
Modern Measurement Techniques in Surface Metrology: Part II; Optical Instruments
,”
Wear
,
125
(
3
), pp.
289
308
.
6.
Oh
,
H.-S.
, and
Lee
,
H.-L.
,
2001
, “
A Comparative Study Between Total Thickness Variance and Site Flatness of Polished Silicon Wafer
,”
Jpn. J. Appl. Phys.
,
40
(
9R
), p.
5300
.
7.
Zhou
,
F.
,
Su
,
H.
,
Joe
,
H.-E.
, and
Jun
,
M. B.-G.
,
2020
, “
Temperature Insensitive Fiber Optical Refractive Index Probe With Large Dynamic Range at 1,550 nm
,”
Sens. Actuat. A
,
312
, p.
112102
.
8.
Zhou
,
F.
,
Fu
,
X.
,
Chen
,
S.
,
Kim
,
E.
, and
Jun
,
M. B.-G.
,
2023
, “
Fiber Optic Sensor for Smart Manufacturing
,”
Int. J. Precis. Eng. Manuf.
,
1
(
2
), pp.
125
136
.
9.
Joe
,
H. E.
,
Zhou
,
F.
,
Yun
,
S. T.
, and
Jun
,
M. B. G.
,
2020
, “
Detection and Quantification of Underground CO2 Leakage Into the Soil Using a Fiber-Optic Sensor
,”
Opt. Fiber Technol.
,
60
.
10.
Zhou
,
F.
,
Jo
,
S.
,
Fu
,
X.
,
Tsai
,
J.-T.
, and
Jun
,
M. B.-G.
,
2020
, “
Fabrication of Optical Fiber Sensors Based on Femtosecond Laser Micro Machining
,”
ASME J. Micro- Nano-Manuf.
,
8
(
4
), p.
041010
.
11.
Zhou
,
F.
,
Kung
,
P.
,
Li
,
X.
,
Behjat
,
V.
, and
Jun
,
M. B. G.
,
2021
, “
Modeling of a Sampled Apodized Fiber Bragg Grating Moisture Sensor
,”
Opt. Fiber Technol.
,
65
, p.
102630
.
12.
Su
,
H.
, and
Zhou
,
F.
,
2018
, “
Optimization of Micro-Optical Fiber-Based Mach–Zehnder Interferometer RI Sensor
,”
J. Lightwave Technol.
,
36
(
18
), pp.
4039
4045
.
13.
Zhou
,
F.
,
Tsai
,
J.-T.
,
Jo
,
S.
,
Kim
,
G.
,
Lee
,
P. C.
, and
Jun
,
M. B.-G.
,
2020
, “
In-Situ Monitoring of Solidification Process of PVA Solution by Fiber Optic Sensor Technique
,”
IEEE Sens. J.
,
21
(
5
), pp.
6170
6178
.
14.
Fu
,
X.
,
Zhou
,
F.
,
Yun
,
H.
,
Kim
,
E.
,
Chen
,
S.
, and
Jun
,
M. B.-G.
,
2023
, “
Machine Straightness Error Measurement Based on Optical Fiber Fabry–Pérot Interferometer Monitoring Technique
,”
ASME J. Manuf. Sci. Eng.
,
145
(
1
), p.
011007
.
15.
Zhou
,
F.
,
Duan
,
W.
,
Li
,
X.
,
Tsai
,
J.-T.
, and
Jun
,
M. B. G.
,
2021
, “
High Precision In-Situ Monitoring of Electrochemical Machining Process Using an Optical Fiber Fabry–Pérot Interferometer Sensor
,”
J. Manuf. Processes
,
68
, pp.
180
188
.
16.
You
,
K. E.
,
Uddin
,
N.
,
Kim
,
T. H.
,
Fan
,
Q. H.
, and
Yoon
,
H. J.
,
2018
, “
Highly Sensitive Detection of Biological Substances Using Microfluidic Enhanced Fabry-Perot Etalon-Based Optical Biosensors
,”
Sens. Actuat. B
,
277
, pp.
62
68
.
17.
Jiang
,
M.
,
Li
,
Q. S.
,
Wang
,
J. N.
,
Yao
,
W. G.
,
Jin
,
Z.
,
Sui
,
Q.
,
Shi
,
J.
,
Zhang
,
F.
,
Jia
,
L.
, and
Dong
,
W. F.
,
2013
, “
Optical Response of Fiber-Optic Fabry-Perot Refractive-Index Tip Sensor Coated With Polyelectrolyte Multilayer Ultra-Thin Films
,”
J. Lightwave Technol.
,
31
(
14
), pp.
2321
2326
.
18.
Butt
,
M.
,
Khonina
,
S.
, and
Kazanskiy
,
N.
,
2019
, “
Numerical Analysis of a Miniaturized Design of a Fabry–Perot Resonator Based on Silicon Strip and Slot Waveguides for Bio-Sensing Applications
,”
J. Mod. Opt.
,
66
(
11
), pp.
1172
1178
.
19.
Miguel-Sánchez
,
J.
,
Reinhard
,
A.
,
Togan
,
E.
,
Volz
,
T.
,
Imamoglu
,
A.
,
Besga
,
B.
,
Reichel
,
J.
, and
Estève
,
J.
,
2013
, “
Cavity Quantum Electrodynamics With Charge-Controlled Quantum Dots Coupled to a Fiber Fabry–Perot Cavity
,”
New J. Phys.
,
15
(
4
), p.
045002
.
20.
Pfeifer
,
H.
,
Ratschbacher
,
L.
,
Gallego
,
J.
,
Saavedra
,
C.
,
Faßbender
,
A.
,
von Haaren
,
A.
,
Alt
,
W.
, et al
,
2022
, “
Achievements and Perspectives of Optical Fiber Fabry–Perot Cavities
,”
Appl. Phys. B
,
128
(
2
), p.
29
.
21.
Srinivasan
,
K.
, and
Painter
,
O.
,
2007
, “
Linear and Nonlinear Optical Spectroscopy of a Strongly Coupled Microdisk–Quantum Dot System
,”
Nature
,
450
(
7171
), pp.
862
865
.
22.
Ismail
,
N.
,
Kores
,
C. C.
,
Geskus
,
D.
, and
Pollnau
,
M.
,
2016
, “
Fabry-Pérot Resonator: Spectral Line Shapes, Generic and Related Airy Distributions, Linewidths, Finesses, and Performance at Low or Frequency-Dependent Reflectivity
,”
Opt. Express
,
24
(
15
), pp.
16366
16389
.
23.
Zhou
,
F.
,
Chen
,
S.
,
Fu
,
X.
, and
Jun
,
M. B. G.
,
2024
, “
Real-Time Monitoring of the Interelectrode Gap During Electrochemical Machining Processes Using a Smart Machine Tool Equipped With an Optical Fiber Fabry-Pérot Interferometer: Principle and Application
,”
Mech. Syst. Signal Process
,
211
, p.
111245
.
24.
Okamoto
,
K.
,
2006
,
Fundamentals of Optical Waveguides
,
Academic Press
,
Burlington, MA
.
25.
Pitilakis
,
A.
, and
Kriezis
,
E. E.
,
2022
, “
Ultrafast Pulse Propagation in Graphene-Comprising Nanophotonic Waveguides Considering Nonperturbative Electrodynamic Nonlinearity
,”
J. Opt. Soc. Am. B
,
39
(
10
), pp.
2723
2734
.
26.
Ciddor
,
P. E.
,
1996
, “
Refractive Index of Air: New Equations for the Visible and Near Infrared
,”
Appl. Opt.
,
35
(
9
), pp.
1566
1573
.
27.
Li
,
H. H.
,
1980
, “
Refractive Index of Silicon and Germanium and Its Wavelength and Temperature Derivatives
,”
J. Phys. Chem. Ref. Data
,
9
(
3
), pp.
561
658
.
You do not currently have access to this content.