Abstract

In practical semiconductor processes, the defect analysis for wafer map is a critical step for improving product quality and yield. These defect patterns can provide important process information so that the process engineers can identify the key cause of process anomalies. However, in supervised learning, the manual annotation for wafer maps is an extremely exhausting task, and it can also induce misjudgment when a long-term operation is implemented. Toward this end, this paper proposes a new auto-labeling system based on ensemble classification. The noted VGG16 model is used in ensemble learning as the building block to train the classifier via a limited number of labeled data. Through the model being trained, the auto-labeling procedure is executed to annotate abundant unlabeled data. Therefore, the classification performances between the models trained by supervised and semi-supervised learning can be compared. In addition, the gradient-weighted class activation mapping (Grad-CAM) is also adopted to analyze and verify the quality of auto-labeling by visual inspection. Based on the experimental results, the proposed auto-label system can return a satisfactory classification performance, and then, the manual labeling operation can be drastically reduced. The classification performance for wafer defect patterns can be further assured as the auto-labeled data are given with corresponding confidence scores of specific defect patterns being identified in this study.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Chien
,
C.-F.
,
Chen
,
Y.-H.
, and
Lo
,
M.-F.
,
2020
, “
Advanced Quality Control (AQC) of Silicon Wafer Specifications for Yield Enhancement for Smart Manufacturing
,”
IEEE Trans. Semicond. Manuf.
,
33
(
4
), pp.
569
577
.
2.
Fan
,
S.-K. S.
,
Cheng
,
C.-W.
, and
Tsai
,
D.-M.
,
2020
, “
Fault Diagnosis of Wafer Acceptance Test and Chip Probing Between Front-End-of-Line and Back-End-of-Line Processes
,”
IEEE Trans Autom. Sci. Eng.
,
19
(
4
), pp.
3068
3082
.
3.
Tao
,
X. Z.
,
Wang
,
H.
,
Zhang
,
Z. T.
,
Zhang
,
D. P.
,
Xu
,
D.
,
Gong
,
X. Y.
, and
Zhang
,
L.
,
2018
, “
Wire Defect Recognition of Spring-Wire Socket Using Multitask Convolutional Neural Networks
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
8
(
4
), pp.
689
698
.
4.
Xie
,
Q.
,
Li
,
D. W.
,
Xu
,
J. X.
,
Yu
,
Z. H.
, and
Wang
,
J.
,
2019
, “
Automatic Detection and Classification of Sewer Defects via Hierarchical Deep Learning
,”
IEEE Trans. Autom. Sci. Eng.
,
16
(
4
), pp.
1836
1847
.
5.
Jia
,
X.
,
Mai
,
X. C.
,
Cui
,
Y.
,
Yuan
,
Y. X.
,
Xing
,
X. H.
,
Seo
,
H.
,
Xing
,
L.
, and
Meng
,
M. Q.-H.
,
2020
, “
Automatic Polyp Recognition in Colonoscopy Images Using Deep Learning and Two-Stage Pyramidal Feature Prediction
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
3
), pp.
1570
1584
. July 2020.
6.
Zheng
,
Z. Y.
,
Yan
,
H.
,
Setzer
,
F. C.
,
Shi
,
K. J.
,
Mupparapu
,
M.
, and
Li
,
J.
,
2021
, “
Anatomically Constrained Deep Learning for Automating Dental CBCT Segmentation and Lesion Detection
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
2
), pp.
603
614
.
7.
Fevola
,
E.
,
Zanco
,
A.
,
Grivet-Talocia
,
S.
,
Bradde
,
T.
, and
Stefano
,
M. D.
,
2019
, “
An Adaptive Sampling Process for Automated Multivariate Macromodeling Based on Hamiltonian-Based Passivity Metrics
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
9
(
9
), pp.
1698
1711
.
8.
Li
,
Y. T.
,
Kuo
,
P.
, and
Guo
,
J. I.
,
2021
, “
Automatic Industry PCB Board DIP Process Defect Detection System Based on Deep Ensemble Self-Adaption Method
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
11
(
2
), pp.
312
323
.
9.
Wang
,
S.
,
Zhong
,
Z. T.
,
Zhao
,
Y. L.
, and
Zuo
,
L.
,
2021
, “
A Variational Autoencoder Enhanced Deep Learning Model for Wafer Defect Imbalanced Classification
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
11
(
12
), pp.
2055
2060
.
10.
Li
,
C. J.
,
Qu
,
Z.
,
Wang
,
S. Y.
,
Bao
,
K. H.
, and
Wang
,
S. Y.
,
2020
, “
A Method of Defect Detection for Focal Hard Samples PCB Based on Extended FPN Model
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
12
(
2
), pp.
217
227
.
11.
Tsai
,
D.-M.
,
Fan
,
S.-K. S.
, and
Chou
,
Y.-H.
,
2021
, “
Auto-Annotated Deep Segmentation for Surface Defect Detection
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
10
. Art no. 5011410.
12.
Liao
,
S. D.
,
Huang
,
C. Y.
,
Liang
,
Y.
,
Zhang
,
H. Q.
, and
Liu
,
S. F.
,
2022
, “
Solder Joint Defect Inspection Method Based on ConvNeXt-YOLOX
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
12
(
11
), pp.
1890
1898
.
13.
Fan
,
S.-K. S.
,
Tsai
,
D.-M.
, and
Shih
,
Y.-F.
,
2023
, “
Self-Assured Deep Learning With Minimum Pre-Labeled Data for Wafer Pattern Classification
,”
IEEE Trans. Semicond. Manuf.
,
36
(
3
), pp.
404
415
.
14.
Kahng
,
H.
, and
Kim
,
S. B.
,
2021
, “
Self-Supervised Representation Learning for Wafer Bin Map Defect Pattern Classification
,”
IEEE Trans. Semicond. Manuf.
,
34
(
1
), pp.
74
86
.
15.
Saqlain
,
M.
,
Jargalsaikhan
,
B.
, and
Lee
,
J. Y.
,
2019
, “
A Voting Ensemble Classifier for Wafer Map Defect Patterns Identification in Semiconductor Manufacturing
,”
IEEE Trans. Semicond. Manuf.
,
32
(
2
), pp.
171
182
.
16.
Tsai
,
T. H.
, and
Lee
,
Y. C.
,
2020
, “
A Light-Weight Neural Network for Wafer Map Classification Based on Data Augmentation
,”
IEEE Trans. Semicond. Manuf.
,
33
(
4
), pp.
663
672
.
17.
Yu
,
J.
, and
Lu
,
X.
,
2016
, “
Wafer Map Defect Detection and Recognition Using Joint Local and Nonlocal Linear Discriminant Analysis
,”
IEEE Trans. Semicond. Manuf.
,
29
(
1
), pp.
33
43
.
18.
Alawieh
,
M. B.
,
Boning
,
D.
, and
Pan
,
D. Z.
,
2020
, “
Wafer Map Defect Patterns Classification Using Deep Selective Learning
,”
Proceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC)
,
Virtual Event USA
,
July 20–24
, pp.
1
6
.
19.
Yu
,
J.
,
2019
, “
Enhanced Stacked Denoising Autoencoder-Based Feature Learning for Recognition of Wafer Map Defects
,”
IEEE Trans. Semicond. Manuf.
,
32
(
4
), pp.
613
624
.
20.
Yu
,
N.
,
Xu
,
Q.
, and
Wang
,
H.
,
2019
, “
Wafer Defect Pattern Recognition and Analysis Based on Convolutional Neural Network
,”
IEEE Trans. Semicond. Manuf.
,
32
(
4
), pp.
566
573
.
21.
Ishida
,
T.
,
Nitta
,
I.
,
Fukuda
,
D.
, and
Kanazawa
,
Y.
,
2019
, “
Deep Learning-Based Wafer-Map Failure Pattern Recognition Framework
,”
Proceedings of the 20th International Symposium on Quality Electronic Design (ISQED)
,
Santa Clara, CA
,
Mar. 6–7
, pp.
291
297
.
22.
Chen
,
L. L. Y.
, et al
, “
Semi-Supervised Framework for Wafer Defect Pattern Recognition With Enhanced Labeling
,”
Proceedings of the 2021 IEEE International Test Conference (ITC)
,
Anaheim, CA
,
Oct. 10–15
, pp.
208
212
.
23.
Simonyan
,
K.
, and
Zisserman
,
A.
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,” arXiv:1409.1556. https://ui.adsabs.harvard.edu/abs/2014arXiv1409.1556S.
24.
Breiman
,
L.
,
1996
, “
Bagging Predictors
,”
Mach. Learn.
,
24
(
2
), pp.
123
140
.
25.
Selvaraju
,
R. R.
,
Cogswell
,
M.
,
Das
,
A.
,
Vedantam
,
R.
,
Parikh
,
D.
, and
Batra
,
D.
,
2017
, “
Grad-CAM: Visual Explanations From Deep Networks via Gradient-Based Localization
,”
Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV)
,
Venice, Italy
,
Oct. 22–29
, pp.
618
626
.
26.
Zhou
,
B.
,
Khosla
,
A.
,
Lapedriza
,
A.
,
Oliva
,
A.
, and
Torralba
,
A.
, “
Learning Deep Features for Discriminative Localization
,” arXiv:1512.04150. https://ui.adsabs.harvard.edu/abs/2015arXiv151204150Z.
27.
Bengio
,
Y.
,
Courville
,
A.
, and
Vincent
,
P.
,
2013
, “
Representation Learning: A Review and New Perspectives
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
35
(
8
), pp.
1798
1828
.
28.
Mahendran
,
A.
, and
Vedaldi
,
A.
, “
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
,” arXiv:1512.02017. https://ui.adsabs.harvard.edu/abs/2015arXiv151202017M.
You do not currently have access to this content.