Abstract

Defective chips in wafer bin maps (WBMs) form different spatial patterns depending on the root causes of process failures. Therefore, the identification of defect patterns in WBMs can help practitioners identify the root causes. Previous studies have focused on wafer-level classification even though chip-level classification can provide additional information regarding defect locations and defect sizes. Chip-level classification is more challenging than wafer-level classification because existing chip-level classification methods require chip-level labels, which are laborious to collect. We propose a method for chip-level defect classification using only wafer-level labels based on weakly supervised semantic segmentation. We first train a classification network using wafer-level labels and extract class activation maps (CAMs), which are visualizations of the discriminative regions. We then generate chip-level pseudo-labels using the extracted CAMs and use these labels to train a segmentation network, which predicts chip-level defect types. Experimental results verify the effectiveness of the proposed method.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Taam
,
W.
, and
Hamada
,
M.
,
1993
, “
Detecting Spatial Effects From Factorial Experiments: An Application From Integrated-Circuit Manufacturing
,”
Technometrics
,
35
(
2
), pp.
149
160
.
2.
Yoon
,
H.
, and
Kim
,
H.
,
2023
, “
Label-Noise Robust Deep Generative Model for Semi-Supervised Learning
,”
Technometrics
,
65
(
1
), pp.
83
95
.
3.
Lee
,
H.
,
Lee
,
J.
, and
Kim
,
H.
,
2023
, “
Semi-Supervised Learning for Simultaneous Location Detection and Classification of Mixed-Type Defect Patterns in Wafer Bin Maps
,”
IEEE Trans. Semicond. Manuf.
,
36
(
2
), pp.
220
230
.
4.
Choi
,
J.
,
Ma
,
E.-Y.
, and
Kim
,
H.
,
2023
, “
Simultaneous Classification and Out-of-Distribution Detection for Wafer Bin Maps
,”
Q. Eng.
5.
Kim
,
J.
,
Lee
,
Y.
, and
Kim
,
H.
,
2018
, “
Detection and Clustering of Mixed-Type Defect Patterns in Wafer Bin Maps
,”
IISE Trans.
,
50
(
2
), pp.
99
111
.
6.
Lee
,
H.
, and
Kim
,
H.
,
2020
, “
Semi-Supervised Multi-label Learning for Classification of Wafer Bin Maps With Mixed-Type Defect Patterns
,”
IEEE Trans. Semicond. Manuf.
,
33
(
4
), pp.
653
662
.
7.
Park
,
S.
,
Kim
,
K.
, and
Kim
,
H.
,
2022
, “
Prediction of Highly Imbalanced Semiconductor Chip-Level Defects Using Uncertainty-Based Adaptive Margin Learning
,”
IISE Trans.
,
55
(
2
), pp.
147
155
.
8.
Cho
,
H.
,
Koo
,
W.
, and
Kim
,
H.
,
2023
, “
Prediction of Highly Imbalanced Semiconductor Chip-Level Defects in Module Tests Using Multimodal Fusion and Logit Adjustment
,”
IEEE Trans. Semicond. Manuf.
,
36
(
3
), pp.
425
433
.
9.
LeCun
,
Y.
,
Bengio
,
Y.
,
1995
, “
Convolutional Networks for Images, Speech, and Time Series
,”
Hand. Brain Theory Neural Netw.
,
3361
(
10
), p.
1995
.
10.
Kyeong
,
K.
, and
Kim
,
H.
,
2018
, “
Classification of Mixed-Type Defect Patterns in Wafer Bin Maps Using Convolutional Neural Networks
,”
IEEE Trans. Semicond. Manuf.
,
31
(
3
), pp.
395
402
.
11.
Tello
,
G.
,
Al-Jarrah
,
O. Y.
,
Yoo
,
P. D.
,
Al-Hammadi
,
Y.
,
Muhaidat
,
S.
, and
Lee
,
U.
,
2018
, “
Deep-Structured Machine Learning Model for the Recognition of Mixed-Defect Patterns in Semiconductor Fabrication Processes
,”
IEEE Trans. Semicond. Manuf.
,
31
(
2
), pp.
315
322
.
12.
Nakazawa
,
T.
, and
Kulkarni
,
D. V.
,
2018
, “
Wafer Map Defect Pattern Classification and Image Retrieval Using Convolutional Neural Network
,”
IEEE Trans. Semicond. Manuf.
,
31
(
2
), pp.
309
314
.
13.
Wang
,
J.
,
Xu
,
C.
,
Yang
,
Z.
,
Zhang
,
J.
, and
Li
,
X.
,
2020
, “
Deformable Convolutional Networks for Efficient Mixed-Type Wafer Defect Pattern Recognition
,”
IEEE Trans. Semicond. Manuf.
,
33
(
4
), pp.
587
596
.
14.
Hyun
,
Y.
, and
Kim
,
H.
,
2020
, “
Memory-Augmented Convolutional Neural Networks With Triplet Loss for Imbalanced Wafer Defect Pattern Classification
,”
IEEE Trans. Semicond. Manuf.
,
33
(
4
), pp.
622
634
.
15.
Hwang
,
J.
, and
Kim
,
H.
,
2020
, “
Variational Deep Clustering of Wafer Map Patterns
,”
IEEE Trans. Semicond. Manuf.
,
33
(
3
), pp.
466
475
.
16.
Shin
,
W.
,
Kahng
,
H.
, and
Kim
,
S. B.
,
2022
, “
Mixup-Based Classification of Mixed-Type Defect Patterns in Wafer Bin Maps
,”
Comput. Indus. Eng.
,
167
, p.
107996
.
17.
Shen
,
P.-C.
, and
Lee
,
C.-Y.
,
2022
, “
Wafer Bin Map Recognition With Autoencoder-Based Data Augmentation in Semiconductor Assembly Process
,”
IEEE Trans. Semicond. Manuf.
,
35
(
2
), pp.
198
209
.
18.
Kim
,
S.
, and
Kim
,
H.
,
2023
, “
Mixed-Type Defect Pattern Recognition in Noisy Labeled Wafer Bin Maps
,”
Q. Eng.
19.
Xu
,
J.
,
Zhou
,
C.
,
Cui
,
Z.
,
Xu
,
C.
,
Huang
,
Y.
,
Shen
,
P.
,
Li
,
S.
, and
Yang
,
J.
,
2021
, “
Scribble-Supervised Semantic Segmentation Inference
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Virtual
,
Oct. 11–17
, pp.
15354
15363
.
20.
Babar
,
S.
, and
Das
,
S.
,
2021
, “
Where to Look?: Mining Complementary Image Regions for Weakly Supervised Object Localization
,”
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
,
Virtual
,
Jan. 5–9
, pp.
1010
1019
.
21.
Dong
,
Z.
,
Wang
,
J.
,
Cui
,
B.
,
Wang
,
D.
, and
Wang
,
X.
,
2020
, “
Patch-Based Weakly Supervised Semantic Segmentation Network for Crack Detection
,”
Construct. Build. Mater.
,
258
, p.
120291
.
22.
Wang
,
J.
, and
Xia
,
B.
,
2021
, “
Bounding Box Tightness Prior for Weakly Supervised Image Segmentation
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Virtual
,
Sept. 27–Oct. 1
,
Springer
, pp.
526
536
.
23.
Lee
,
S.
,
Lee
,
M.
,
Lee
,
J.
, and
Shim
,
H.
,
2021
, “
Railroad is Not a Train: Saliency as Pseudo-Pixel Supervision for Weakly Supervised Semantic Segmentation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Virtual
,
June 19–25
, pp.
5495
5505
.
24.
Wang
,
Y.
,
Zhang
,
J.
,
Kan
,
M.
,
Shan
,
S.
, and
Chen
,
X.
,
2019
, “Self-Supervised Scale Equivariant Network for Weakly Supervised Semantic Segmentation,” preprint arXiv:1909.03714.
25.
Chen
,
P.
,
Liu
,
S.
,
Zhao
,
H.
, and
Jia
,
J.
,
2020
, “Gridmask Data Augmentation,” preprint arXiv:2001.04086.
26.
Zhou
,
B.
,
Khosla
,
A.
,
Lapedriza
,
A.
,
Oliva
,
A.
, and
Torralba
,
A.
,
2016
, “
Learning Deep Features for Discriminative Localization
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Caesars Palace, Paradise, NV
,
June 26–July 1
, pp.
2921
2929
.
27.
Wang
,
Y.
,
Zhang
,
J.
,
Kan
,
M.
,
Shan
,
S.
, and
Chen
,
X.
,
2020
, “
Self-Supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Virtual
,
June 14–19
, pp.
12275
12284
.
28.
Zhang
,
X.
,
Wei
,
Y.
,
Feng
,
J.
,
Yang
,
Y.
, and
Huang
,
T. S.
,
2018
, “
Adversarial Complementary Learning for Weakly Supervised Object Localization
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–22
, pp.
1325
1334
.
29.
Fukushima
,
K.
,
1975
, “
Cognitron: A Self-Organizing Multilayered Neural Network
,”
Biol. Cyber.
,
20
(
3
), pp.
121
136
.
30.
Sun
,
K.
,
Shi
,
H.
,
Zhang
,
Z.
, and
Huang
,
Y.
,
2021
, “
ECS-Net: Improving Weakly Supervised Semantic Segmentation by Using Connections Between Class Activation Maps
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Virtual
,
Oct. 11–17
, pp.
7283
7292
.
31.
Wei
,
Y.
,
Feng
,
J.
,
Liang
,
X.
,
Cheng
,
M.-M.
,
Zhao
,
Y.
, and
Yan
,
S.
,
2017
, “
Object Region Mining With Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
1568
1576
.
32.
Singh
,
K. K.
, and
Lee
,
Y. J.
,
2017
, “
Hide-and-Seek: Forcing a Network to be Meticulous for Weakly-Supervised Object and Action Localization
,”
2017 IEEE International Conference on Computer Vision (ICCV)
,
Venice, Italy
,
Oct. 22–29
,
IEEE
, pp.
3544
3553
.
33.
Hou
,
Q.
,
Jiang
,
P.
,
Wei
,
Y.
, and
Cheng
,
M.-M.
,
2018
, “
Self-Erasing Network for Integral Object Attention
,”
Adv. Neural Inform. Process. Syst.
, Montreal, Canada, Dec. 3–8.
34.
Wu
,
M.-J.
,
Jang
,
J.-S. R.
, and
Chen
,
J.-L.
,
2015
, MIR-WM811K: Dataset for Wafer Map Failure Pattern Recognition, http://mirlab.org/dataset/public.
35.
Wu
,
M. J.
,
Jang
,
J. S. R.
, and
Chen
,
J. L.
,
2014
, “
Wafer Map Failure Pattern Recognition and Similarity Ranking for Large-Scale Data Sets
,”
IEEE Trans. Semicond. Manuf.
,
28
(
1
), pp.
1
12
.
36.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł.
, and
Polosukhin
,
I.
,
2017
, “
Attention is All You Need
,”
Adv. Neural Inform. Process. Syst.
, Long Beach, CA, Dec. 4–9.
37.
Shi
,
X.
,
Khademi
,
S.
,
Li
,
Y.
, and
van Gemert
,
J.
,
2021
, “
Zoom-Cam: Generating Fine-Grained Pixel Annotations From Image Labels
,”
2020 25th International Conference on Pattern Recognition (ICPR)
,
Virtual
,
Jan. 10–15
,
IEEE
, pp.
10289
10296
.
38.
Wei
,
Y.
,
Xiao
,
H.
,
Shi
,
H.
,
Jie
,
Z.
,
Feng
,
J.
, and
Huang
,
T. S.
,
2018
, “
Revisiting Dilated Convolution: A Simple Approach for Weakly-and Semi-Supervised Semantic Segmentation
,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
7268
7277
.
39.
Ioffe
,
S.
, and
Szegedy
,
C.
,
2015
, “
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
,”
International Conference on Machine Learning
,
Lille, France
,
July 6–11
,
PMLR
, pp.
448
456
.
40.
Lin
,
M.
,
Chen
,
Q.
, and
Yan
,
S.
,
2013
, “Network in Network,” preprint arXiv:1312.4400.
41.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
Conference on Learning Representations (ICLR)
,
San Diego, CA
,
May 7–9
.
42.
Glorot
,
X.
, and
Bengio
,
Y.
,
2010
, “
Understanding the Difficulty of Training Deep Feedforward Neural Networks
,”
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings
,
Sardinia, Italy
,
May 13–15
, pp.
249
256
.
You do not currently have access to this content.