Abstract

Friction stir welding (FSW) produces inhomogeneous mechanical and metallurgical properties in the weld, which further require post-weld processing to control the heterogeneity. In the present study, the heterogeneity in the weld is reduced through counter-variable rotation friction stir welding (CVRFSW). The material flow and temperature distribution significantly affect the inhomogeneity of the FSWed properties which has been studied by developing a three-dimensional Lagrangian method-based viscoplastic model. The material flow, strain rate, and temperature distribution in conventional FSW (CFSW) and CVRFSW are studied quantitatively. The study revealed that CVRFSW improved joint strength and reduced the inhomogeneity of temperature, strain, and hardness. At a 10% lower shoulder speed than a pin, the weld strength improved by 16%. The simulation predicted that the temperature difference between the advancing side (AS) and the retreating side (RS) was 36 °C in CFSW, which was reduced to 8 °C in CVRFSW. Material deformation in CVRFSW occurred at a strain rate more than twice that of CFSW, and the asymmetry of strain rate between AS and RS reduced to one-fifth. Microstructures and their orientations of the welds were studied in detail. These findings contribute to the understanding of CVRFSW processes for enhanced weld quality and mechanical performance for industrial applications.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. R Rep.
,
50
(
1–2
), pp.
1
78
.
2.
Sahu
,
S.
,
Mypati
,
O.
,
Pal
,
S. K.
,
Shome
,
M.
, and
Srirangam
,
P.
,
2021
, “
Effect of Weld Parameters on Joint Quality in Friction Stir Welding of Mg Alloy to DP Steel Dissimilar Materials
,”
CIRP J. Manuf. Sci. Technol.
,
35
, pp.
502
516
.
3.
Liu
,
X.
,
Zhao
,
S.
,
Chen
,
K.
, and
Ni
,
J.
,
2018
, “
Material Flow Visualization of Dissimilar Friction Stir Welding Process Using Nano-CT
,”
13th International Manufacturing Science and Engineering Conference MSEC2018
,
College Station, TX
,
June 18–22
, pp.
1
8
.
4.
Jain
,
R.
,
Pal
,
S. K.
, and
Singh
,
S. B.
,
2017
, “
Finite Element Simulation of Pin Shape Influence on Material Flow, Forces in Friction Stir Welding
,”
Int. J. Adv. Manuf. Technol.
,
94
(
5–8
), pp.
1781
1797
.
5.
Mahto
,
P.
,
and Pal
,
R.
, and
K
,
S.
,
2020
, “
Friction Stir Welding of Dissimilar Materials: An Investigation of Microstructure and Nano-Indentation Study
,”
J. Manuf. Processes
,
55
(
Dec. 2019
), pp.
103
118
.
6.
Iqbal
,
M. P.
,
Tripathi
,
A.
,
Jain
,
R.
,
Mahto
,
R. P.
,
Pal
,
S. K.
, and
Mandal
,
P.
,
2020
, “
Numerical Modelling of Microstructure in Friction Stir Welding of Aluminium Alloys
,”
Int. J. Mech. Sci.
,
185
, p.
105882
.
7.
Maeda
,
M.
,
Liu
,
H.
,
Fujii
,
H.
, and
Shibayanagi
,
T.
,
2005
, “
Temperature Field in the Vicinity of FSW-Tool During Friction Stir Welding of Aluminium Alloys
,”
Weld. World
,
49
(
3–4
), pp.
69
75
.
8.
Kumar
,
K.
, and
Kailas
,
S. V.
,
2008
, “
The Role of Friction Stir Welding Tool on Material Flow and Weld Formation
,”
Mater. Sci. Eng. A
,
485
(
1–2
), pp.
367
374
.
9.
Chauhan
,
P.
,
Jain
,
R.
,
Pal
,
S. K.
, and
Singh
,
S. B.
,
2018
, “
Modeling of Defects in Friction Stir Welding Using Coupled Eulerian and Lagrangian Method
,”
J. Manuf. Processes
,
34
, pp.
158
166
.
10.
Mahto
,
R. P.
,
Kumar
,
R.
, and
Pal
,
S. K.
,
2020
, “
Characterizations of Weld Defects, Intermetallic Compounds and Mechanical Properties of Friction Stir Lap Welded Dissimilar Alloys
,”
Mater. Charact.
,
160
(
Aug. 2019
), p.
110115
.
11.
Xu
,
W. F.
,
Luo
,
Y. X.
, and
Fu
,
M. W.
,
2018
, “
Microstructure Evolution in the Conventional Single Side and Bobbin Tool Friction Stir Welding of Thick Rolled 7085-T7452 Aluminum Alloy
,”
Mater. Charact.
,
138
(
Aug. 2017
), pp.
48
55
.
12.
Wang
,
F. F.
,
Li
,
W. Y.
,
Shen
,
J.
,
Wen
,
Q.
, and
Santos
,
J. F.
,
2018
, “
Improving Weld Formability by a Novel Dual-Rotation Bobbin Tool Friction Stir Welding
,”
J. Mater. Sci. Technol.
,
34
(
1
), pp.
135
139
.
13.
Barbini
,
A.
,
Carstensen
,
J.
, and
dos Santos
,
J. F.
,
2018
, “
Influence of a Non-Rotating Shoulder on Heat Generation, Microstructure and Mechanical Properties of Dissimilar AA2024/AA7050 FSW Joints
,”
J. Mater. Sci. Technol.
,
34
(
1
), pp.
119
127
.
14.
Liu
,
X. M.
,
Zhang
,
X. M.
,
Yao
,
J. S.
,
Yin
,
Y. H.
, and
Xia
,
P. Y.
,
2017
, “
Optimization of Rotation Speed Ratio in Dual-Rotation Friction Stir Welding by Finite Element Method
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2869
2874
.
15.
Zhou
,
L.
,
Zhang
,
R. X.
,
Hu
,
X. Y.
,
Guo
,
N.
,
Zhao
,
H. H.
, and
Huang
,
Y. X.
,
2019
, “
Effects of Rotation Speed of Assisted Shoulder on Microstructure and Mechanical Properties of 6061-T6 Aluminum Alloy by Dual-Rotation Friction Stir Welding
,”
Int. J. Adv. Manuf. Technol.
,
100
(
1–4
), pp.
199
208
.
16.
Shi
,
L.
,
Wu
,
C. S.
, and
Chen
,
M. A.
,
2013
, “
Numerical Analysis of Heat Transfer and Material Flow in Reverse Dual-Rotation Friction Stir Welding
,”
Proceedings of the 1st International Joint Symposium on Joining and Welding
,
Osaka, Japan
,
Nov. 6–8
, pp.
325
331
.
17.
Mehdi
,
H.
, and
Mishra
,
R. S.
,
2019
, “
Analysis of Material Flow and Heat Transfer in Reverse Dual Rotation Friction Stir Welding: A Review
,”
Int. J. Steel Struct.
,
19
(
2
), pp.
422
434
.
18.
Mostafaei
,
A.
,
Zhao
,
C.
,
He
,
Y.
,
Reza
,
S.
,
Shi
,
B.
,
Shao
,
S.
,
Shamsaei
,
N.
, et al
,
1997
, “
Current Opinion in Solid State & Materials Science Contents
,”
Curr. Opin. Solid State Mater. Sci.
,
2
(
6
), pp.
iii
v
.
19.
Shi
,
L.
,
Wu
,
C. S.
, and
Liu
,
H. J.
,
2014
, “
Modeling the Material Flow and Heat Transfer in Reverse Dual-Rotation Friction Stir Welding
,”
J. Mater. Eng. Perform.
,
23
(
8
), pp.
2918
2929
.
20.
Li
,
J. Q.
, and
Liu
,
H. J.
,
2014
, “
Optimization of Welding Parameters for the Reverse Dual-Rotation Friction Stir Welding of a High-Strength Aluminum Alloy 2219-T6
,”
Int. J. Adv. Manuf. Technol.
,
76
(
5–8
), pp.
1469
1478
.
21.
Li
,
J. Q.
, and
Liu
,
H. J.
,
2015
, “
Effects of the Reversely Rotating Assisted Shoulder on Microstructures During the Reverse Dual-Rotation Friction Stir Welding
,”
J. Mater. Sci. Technol.
,
31
(
4
), pp.
375
383
.
22.
Yu
,
J.
,
Zhao
,
G.
,
Zhang
,
C.
, and
Chen
,
L.
,
2017
, “
Dynamic Evolution of Grain Structure and Micro-Texture Along a Welding Path of Aluminum Alloy Profiles Extruded by Porthole Dies
,”
Mater. Sci. Eng. A
,
682
(
Nov.
), pp.
679
690
.
23.
Jain
,
R.
,
Pal
,
S. K.
, and
Singh
,
S. B.
,
2018
, “
Investigation on Effect of Pin Shapes on Temperature, Material Flow and Forces During Friction Stir Welding: A Simulation Study
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
233
(
9
), pp.
1980
1992
.
24.
Jain
,
R.
,
Kumari
,
K.
,
Pal
,
S. K.
, and
Singh
,
S. B.
,
2018
, “
Counter Rotating Twin-Tool System in Friction Stir Welding Process : A Simulation Study
,”
J. Mater. Process. Technol.
,
255
(
Nov. 2017
), pp.
121
128
.
25.
Fratini
,
L.
,
Buffa
,
G.
, and
Shivpuri
,
R.
,
2010
, “
Mechanical and Metallurgical Effects of in Process Cooling During Friction Stir Welding of AA7075-T6 Butt Joints
,”
Acta Mater.
,
58
(
6
), pp.
2056
2067
.
26.
Mandal
,
S.
,
Rice
,
J.
, and
Elmustafa
,
A. A.
,
2008
, “
Experimental and Numerical Investigation of the Plunge Stage in Friction Stir Welding
,”
J. Mater. Process. Technol.
,
203
(
1–3
), pp.
411
419
.
27.
Li
,
K.
,
Jarrar
,
F.
,
Sheikh-Ahmad
,
J.
, and
Ozturk
,
F.
,
2017
, “
Using Coupled Eulerian Lagrangian Formulation for Accurate Modeling of the Friction Stir Welding Process
,”
Procedia Eng.
,
207
, pp.
574
579
.
28.
He
,
X.
,
Gu
,
F.
, and
Ball
,
A.
,
2014
, “
Progress in Materials Science A Review of Numerical Analysis of Friction Stir Welding
,”
Prog. Mater. Sci.
,
65
, pp.
1
66
.
29.
Wang
,
Y.
,
Zhou
,
Y.
, and
Xia
,
Y
.,
2004
, “
A Constitutive Description of Tensile Behavior for Brass Over a Wide Range of Strain Rates
,”
Mater. Sci. Eng. A
372
(
1–2
), pp.
186
190
.
30.
Nandan
,
R.
,
Roy
,
G. G.
,
Debroy
,
T.
, and
Introduction
,
I.
,
2006
, “
Numerical Simulation of Three-Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding
,”
Metall. Mater. Trans. A
,
37
(
4
), pp.
1247
1259
.
31.
Chiumenti
,
M.
,
Cervera
,
M.
,
Agelet de Saracibar
,
C.
, and
Dialami
,
N.
,
2013
, “
Numerical Modeling of Friction Stir Welding Processes
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
353
369
.
32.
Sheppard
,
T.
, and
Jackson
,
A.
,
1997
, “
Constitutive Equations for Use in Prediction of Flow Stress During Extrusion of Aluminium Alloys
,”
Mater. Sci. Technol.
,
13
(
3
), pp.
203
209
.
33.
Fratini
,
L.
,
Buffa
,
G.
,
Palmeri
,
D.
,
Hua
,
J.
, and
Shivpuri
,
R.
,
2006
, “
Material Flow in FSW of AA7075-T6 Butt Joints: Continuous Dynamic Recrystallization Phenomena
,”
ASME J. Eng. Mater. Technol.
,
128
(
3
), pp.
428
435
.
34.
Grujicic
,
M.
,
Arakere
,
G.
,
Pandurangan
,
B.
,
Ochterbeck
,
J. M.
,
Yen
,
C.
,
Cheeseman
,
B. A.
,
Reynolds
,
A. P.
, and
Sutton
,
M. A.
,
2012
, “
Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys
,”
J. Mater. Eng. Perform.
,
21
, pp.
1824
1840
.
35.
Choudhary
,
A. K.
, and
Jain
,
R.
,
2023
, “
Influence of Stir Zone Temperature and Axial Force on Defect Formation and Their Effect on Weld Efficiency During Friction Stir Welding of AA1100: A Simulation and Experimental Investigation
,”
Mater. Today Commun.
,
37
, p.
107413
.
36.
Jain
,
R.
,
Pal
,
S. K.
, and
Singh
,
S. B.
,
2016
, “
A Study on the Variation of Forces and Temperature in a Friction Stir Welding Process: A Finite Element Approach
,”
J. Manuf. Processes
,
23
, pp.
278
286
.
37.
Iqbal
,
P. M.
,
Jain
,
R.
, and
Pal
,
S. K.
,
2019
, “
Numerical and Experimental Study on Friction Stir Welding of Aluminum Alloy Pipe
,”
J. Mater. Process. Technol.
,
274
, p.
116258
.
38.
Jain
,
R.
,
Pal
,
S. K.
, and
Singh
,
S. B.
,
2018
, “Thermomechanical Simulation of Friction Stir Welding Process Using Lagrangian Method,”
Simulations for Design and Manufacturing
,
U. S.
Dixit
, and
R.
Kant
, eds.,
Springer Nature
,
Singapore
, pp.
103
146
.
39.
Cao
,
J. Y.
,
Wang
,
M.
,
Kong
,
L.
,
Yin
,
Y. H.
, and
Guo
,
L. J.
,
2017
, “
Numerical Modeling and Experimental Investigation of Material Flow in Friction Spot Welding of Al 6061-T6
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
2129
2139
.
40.
Kim
,
Y. G.
,
Fujii
,
H.
,
Tsumura
,
T.
,
Komazaki
,
T.
, and
Nakata
,
K.
,
2006
, “
Three Defect Types in Friction Stir Welding of Aluminum Die Casting Alloy
,”
Mater. Sci. Eng. A
,
415
, pp.
250
254
.
41.
Shi
,
L.
,
Wu
,
C. S.
, and
Liu
,
H. J.
,
2015
, “
The Effect of the Welding Parameters and Tool Size on the Thermal Process and Tool Torque in Reverse Dual-Rotation Friction Stir Welding
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
1
11
.
42.
Cui
,
S.
,
Chen
,
Z. W.
, and
Robson
,
J. D.
,
2010
, “
A Model Relating Tool Torque and Its Associated Power and Specific Energy to Rotation and Forward Speeds During Friction Stir Welding/Processing
,”
Int. J. Mach. Tools Manuf.
,
50
(
12
), pp.
1023
1030
.
43.
Zhang
,
H.
,
Lin
,
S. B.
,
Wu
,
L.
,
Feng
,
J. C.
, and
Ma
,
S. L.
,
2006
, “
Defects Formation Procedure and Mathematic Model for Defect Free Friction Stir Welding of Magnesium Alloy
,”
Mater. Des.
,
27
(
9
), pp.
805
809
.
44.
Iqbal
,
M. P.
,
Jain
,
R.
,
Pal
,
S. K.
, and
Mandal
,
P.
,
2022
, “
Numerical Modelling of Friction Stir Welding of Pipes: Effect of Tool Shoulder on Mechanical Property and Metallurgical Characterization
,”
J. Manuf. Processes
,
79
, pp.
326
339
.
45.
Aydin
,
H.
,
Bayram
,
A.
,
Uǧuz
,
A.
, and
Akay
,
K. S.
,
2009
, “
Tensile Properties of Friction Stir Welded Joints of 2024 Aluminum Alloys in Different Heat-Treated-State
,”
Mater. Des.
,
30
(
6
), pp.
2211
2221
.
46.
Dialami
,
N.
,
Cervera
,
M.
, and
Chiumenti
,
M.
,
2020
, “
Defect Formation and Material Flow in Friction Stir Welding
,”
Eur. J. Mech. A/Solids
,
80
(
Oct. 2019
), p.
103912
.
47.
Fall
,
A.
,
Fesharaki
,
M.
,
Khodabandeh
,
A.
, and
Jahazi
,
M.
,
2016
, “
Tool Wear Characteristics and Effect on Microstructure in Ti-6Al-4V Friction Stir Welded Joints
,”
Metals (Basel)
,
6
(
11
), p.
275
.
48.
Zhu
,
Y.
,
Chen
,
G.
,
Chen
,
Q.
,
Zhang
,
G.
, and
Shi
,
Q.
,
2016
, “
Simulation of Material Plastic Flow Driven by Non-Uniform Friction Force During Friction Stir Welding and Related Defect Prediction
,”
Mater. Des.
,
108
, pp.
400
410
.
49.
Arbegast
,
W. J.
,
2008
, “
A Flow-Partitioned Deformation Zone Model for Defect Formation During Friction Stir Welding
,”
Scr. Mater.
,
58
(
5
), pp.
372
376
.
50.
Hu
,
Y.
,
Liu
,
H.
,
Li
,
S.
,
Du
,
S.
, and
Sekulic
,
D. P.
,
2018
, “
Improving Mechanical Properties of a Joint Through Tilt Probe Penetrating Friction Stir Welding
,”
Mater. Sci. Eng. A
,
731
(
Sept. 2017
), pp.
107
118
.
51.
Sato
,
Y. S.
,
Takauchi
,
H.
,
Park
,
S. H. C.
, and
Kokawa
,
H.
,
2005
, “
Characteristics of the Kissing-Bond in Friction Stir Welded Al Alloy 1050
,”
Mater. Sci. Eng. A
,
405
(
1–2
), pp.
333
338
.
52.
Jata
,
K. V.
, and
Semiatin
,
S. L.
,
2000
, “
Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Aluminum Alloys
,”
Scr. Mater.
,
43
(
8
), pp.
743
749
.
53.
Fratini
,
L.
, and
Buffa
,
G.
,
2005
, “
CDRX Modelling in Friction Stir Welding of Aluminium Alloys
,”
Int. J. Mach. Tools Manuf.
,
45
(
10
), pp.
1188
1194
.
54.
Mahto
,
R. P.
,
Kumar
,
R.
,
Pal
,
S. K.
, and
Panda
,
S. K.
,
2018
, “
A Comprehensive Study on Force, Temperature, Mechanical Properties and Micro-Structural Characterizations in Friction Stir Lap Welding of Dissimilar Materials (AA6061-T6 & AISI304)
,”
J. Manuf. Processes
,
31
, pp.
624
639
.
55.
Sarma
,
V. S.
,
Wang
,
J.
,
Jian
,
W. W.
,
Kauffmann
,
A.
,
Conrad
,
H.
,
Freudenberger
,
J.
, and
Zhu
,
Y. T.
,
2010
, “
Role of Stacking Fault Energy in Strengthening Due to Cryo-Deformation of FCC Metals
,”
Mater. Sci. Eng. A
,
527
(
29–30
), pp.
7624
7630
.
56.
Mahto
,
R. P.
,
Rout
,
M.
, and
Pal
,
S. K.
,
2021
, “
Mechanism of Microstructure Evolution and Grain Growth in Friction Stir Welding of AA6061-T6 and AISI304 in Air and Water Media
,”
Mater. Chem. Phys.
,
273
(
May
), p.
125081
.
57.
Doherty
,
R. D.
,
Hughes
,
D. A.
,
Humphreys
,
F. J.
,
Jonas
,
J. J.
,
Juul Jensen
,
D.
,
Kassner
,
M. E.
,
King
,
W. E.
,
McNelley
,
T. R.
,
McQueen
,
H. J.
, and
Rollett
,
A. D.
,
1998
, “
Current Issues in Recrystallization: A Review
,”
Mater. Today
,
1
(
2
), pp.
14
15
.
58.
Kestens
,
L. A. I.
, and
Pirgazi
,
H.
,
2016
, “
Texture Formation in Metal Alloys with Cubic Crystal Structures
,”
Mater. Sci. Technol. (United Kingdom)
,
32
(
13
), pp.
1303
1315
.
59.
Liu
,
X. C.
,
Sun
,
Y. F.
,
Nagira
,
T.
, and
Fujii
,
H.
,
2018
, “
Investigation of Temperature Dependent Microstructure Evolution of Pure Iron During Friction Stir Welding Using Liquid CO2 rapid Cooling
,”
Mater. Charact.
,
137
, pp.
24
38
.
60.
Vandermeer
,
R. A.
, and
Juul Jensen
,
D.
,
1998
, “
Migration of High Angle Grain Boundaries During Recrystallization
,”
Interface Sci.
,
6
(
1–2
), pp.
95
104
.
61.
Bernier
,
N.
,
Bracke
,
L.
,
Malet
,
L.
, and
Godet
,
S.
,
2014
, “
Crystallographic Reconstruction Study of the Effects of Finish Rolling Temperature on the Variant Selection During Bainite Transformation in C-Mn High-Strength Steels
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
45
(
13
), pp.
5937
5955
.
62.
Gil Sevillano
,
J.
,
van Houtte
,
P.
, and
Aernoudt
,
E.
,
1980
, “
Large Strain Work Hardening and Textures
,”
Prog. Mater. Sci.
,
25
(
2–4
), pp.
69
134
.
63.
Driver
,
J. H.
,
1995
, “
Microstructural and Crystallographic Aspects of Recrystallization
,”
Proceedings of the 16th Risoe International Symposium
,
Roskilde, Denmark
,
Sept. 4–8
,
N.
Hansen
,
D.
Juul Jensen
,
Y. L.
Liu
, and
B.
Ralph
, eds., pp.
25
36
.
You do not currently have access to this content.