Abstract

This paper aims to investigate the cutting behavior of optical glassy polymers in order to identify the shape defects induced by the micro-machining processes. Polycarbonate (PC), Allyl Diglycol Carbonate (CR39), and polythiourethane (MR7) polymers are considered in this study to perform micro-machining experiments using the orthogonal cutting configuration. The comparative analysis is carried out by conducting the cutting experiments on hybrid samples that are composed of two types of polymers (MR7-PC, CR39-PC, and MR7-CR39) and then comparing the topographic state of the machined hybrid surfaces. Results show that PC is by far the polymer that generates the most shape defects because of its high rate of spring-back. This finding has been validated by nanoindentation experiments that reveal the highest mechanical reaction of PC at the time of nanoindentation unloading. This study demonstrates also that the measured thrust forces could be an indicator for predicting the spring-back defects induced by micro-machining.

References

1.
Schottner
,
G.
,
Rose
,
K.
, and
Posset
,
U.
,
2003
, “
Scratch and Abrasion Resistant Coatings on Plastic Lenses—State of the Art, Current Developments and Perspectives
,”
J. Sol.-Gel. Sci. Technol.
,
27
(
1
), pp.
71
79
.
2.
Jha
,
G. S.
,
Seshadri
,
G.
,
Mohan
,
A.
, and
Khandal
,
R. K.
,
2008
, “
Sulfur Containing Optical Plastics and Its Ophthalmic Lenses Applications
,”
E-Polymers
,
8
(
1
), p.
035
.
3.
Bauer
,
T.
,
2005
, “Optical Materials: Plastics,”
Encycl. Mod. Opt.
,
D. G.
Robert
, ed.,
Elsevier
,
Amsterdam
, pp.
480
488
.
4.
Mitsui Chemicals
,
2020
, “
History of MRTM and Eyeglass Lenses
,” https://jp.mitsuichemicals.com/en/special/mr/history/, Accessed March 10, 2023.
5.
Caro
,
J.
,
Cuadrado
,
N.
,
González
,
I.
,
Casellas
,
D.
,
Prado
,
J. M.
,
Vilajoana
,
A.
,
Artús
,
P.
,
Peris
,
S.
,
Carrilero
,
A.
, and
Dürsteler
,
J. C.
,
2011
, “
Microscratch Resistance of Ophthalmic Coatings on Organic Lenses
,”
Surf. Coat. Technol.
,
205
(
21–22
), pp.
5040
5052
.
6.
Sahoo
,
P.
,
Patra
,
K.
,
Singh
,
V. K.
,
Mittal
,
R. K.
, and
Singh
,
R. K.
,
2020
, “
Modeling Dynamic Stability and Cutting Forces in Micro Milling of Ti6Al4V Using Intermittent Oblique Cutting Finite Element Method Simulation-Based Force Coefficients
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091005
.
7.
Sahoo
,
P.
, and
Patra
,
K.
,
2021
, “
Cumulative Reduction of Friction and Size Effects in Micro Milling Through Proper Selection of Coating Thickness of TiAlN Coated Tool: Experimental and Analytical Assessments
,”
J. Manuf. Process.
,
67
, pp.
635
654
.
8.
Anand
,
R. S.
,
Patra
,
K.
, and
Steiner
,
M.
,
2014
, “
Size Effects in Micro Drilling of Carbon Fiber Reinforced Plastic Composite
,”
Prod. Eng.
,
8
(
3
), pp.
301
307
.
9.
Gubbels
,
G. P. H.
,
2006
,
Diamond Turning of Glassy Polymers
,
Technische Universiteit Eindhoven
,
Eindhoven
.
10.
Bolat
,
M.
,
2013
,
Machining of Polycarbonate for Optical Applications
,
Middle East Technical University
,
Ankara
. https://hdl.handle.net/11511/23009
11.
Lucca
,
D. A.
,
Klopfstein
,
M. J.
, and
Riemer
,
O.
,
2020
, “
Ultra-Precision Machining: Cutting With Diamond Tools
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110817
.
12.
Li
,
L.
,
Collins
,
S. A.
, and
Yi
,
A. Y.
,
2007
, “
Optical Effect of Surface Finish by Single Point Diamond Machining
,”
Proc. 22nd Annu. ASPE Meet. ASPE 2007
,
132
(
2
), pp.
0210021
0210029
.
13.
Sambhav
,
K.
,
Tandon
,
P.
,
Kapoor
,
S. G.
, and
Dhande
,
S. G.
,
2013
, “
Mathematical Modeling of Cutting Forces in Microdrilling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
014501
.
14.
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
474
481
.
15.
Sun
,
X.
, and
Cheng
,
K.
,
2015
, “Micro-/Nano-Machining Through Mechanical Cutting,”
Micromanufacturing Engineering and Technology: Second Edition
,
William Andrew Publishing
,
Oxford, UK
, pp.
35
59
.
16.
Mallick
,
P. S.
,
Pratap
,
A.
, and
Patra
,
K.
,
2022
, “
Review on Cryogenic Assisted Micro-Machining of Soft Polymer: An Emphasis on Molecular Physics, Chamber Design, Performance Analysis and Sustainability
,”
J. Manuf. Process.
,
80
, pp.
930
957
.
17.
Sahoo
,
P.
,
Patra
,
K.
,
Szalay
,
T.
, and
Dyakonov
,
A. A.
,
2020
, “
Determination of Minimum Uncut Chip Thickness and Size Effects in Micro-Milling of P-20 Die Steel Using Surface Quality and Process Signal Parameters
,”
Int. J. Adv. Manuf. Technol.
,
106
(
11–12
), pp.
4675
4691
.
18.
Callister
,
W. D.
, and
Rethwisch
,
D. G.
,
2018
,
Materials Science and Engineering: An Introduction
,
Wiley
,
Hoboken, NJ
.
19.
Jee
,
A. Y.
, and
Lee
,
M.
,
2010
, “
Comparative Analysis on the Nanoindentation of Polymers Using Atomic Force Microscopy
,”
Polym. Test.
,
29
(
1
), pp.
95
99
.
20.
Mitsui Chemicals
,
2012
, “
MRTM Lens Brochure
,” https://eu.mitsuichemicals.com/sites/default/files/media/document/2018/mr_brochure_en.pdf, Accessed March 20, 2023.
21.
Ahmad
,
S.
, and
Stejny
,
J.
,
1991
, “
Polymerisation, Structure and Track Recording Properties of CR-39
,”
Int. J. Radiat. Appl. Instrum. Part.
,
19
(
1–4
), pp.
11
16
.
22.
Gamardella
,
F.
,
Ramis
,
X.
,
De la Flor
,
S.
, and
Serra
,
À.
,
2019
, “
Preparation of Poly(Thiourethane) Thermosets by Controlled Thiol-Isocyanate Click Reaction Using a Latent Organocatalyst
,”
React. Funct. Polym.
,
134
, pp.
174
182
.
23.
Desarkar
,
M.
,
Senthilkumar
,
P.
,
Franklin
,
S.
, and
Chatterjee
,
G.
,
2012
, “
Effect of Particulate Fillers on Thermal Expansions and Other Critical Performances of Polycarbonate-Based Compositions
,”
J. Appl. Polym. Sci.
,
124
(
1
), pp.
215
226
.
24.
Dixit
,
M.
,
Mathur
,
V.
,
Gupta
,
S.
,
Baboo
,
M.
,
Sharma
,
K.
, and
Saxena
,
N. S.
,
2009
, “
Morphology, Miscibility and Mechanical Properties of PMMA/PC Blends
,”
Phase Trans.
,
82
(
12
), pp.
866
878
.
25.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
26.
Chegdani
,
F.
, and
El Mansori
,
M.
,
2023
, “
Effect of the Measurement Contact Scale on the Thermomechanical Characterization of Biocomposite Surfaces
,”
Surf. Topogr. Metrol. Prop.
,
11
(
1
), p.
014009
.
27.
Bourmaud
,
A.
, and
Pimbert
,
S.
,
2008
, “
Investigations on Mechanical Properties of Poly(Propylene) and Poly(Lactic Acid) Reinforced by Miscanthus Fibers
,”
Compos. Part A: Appl. Sci. Manuf.
,
39
(
9
), pp.
1444
1454
.
28.
Sheikh-Ahmad
,
J. Y.
,
2009
, “Mechanics of Chip Formation,”
Machining of Polymer Composites
,
Springer
,
Boston, MA
, pp.
63
110
.
29.
Feng
,
H.
,
Sheng
,
Y.
,
Chen
,
G.
,
Jin
,
B.
,
Fang
,
Z.
,
Yang
,
B.
,
Zhou
,
X.
,
Wu
,
W.
,
Xie
,
T.
, and
Zheng
,
N.
,
2023
, “
Ultratough Yet Dynamic Crystalline Poly(Thiourethane) Network Directly From Low Viscosity Precursors
,”
CCS Chem.
, pp.
1
11
.
30.
Liu
,
J.
,
Zhao
,
Z.
,
Wang
,
W.
,
Mays
,
J. W.
, and
Wang
,
S. Q.
,
2019
, “
Brittle-Ductile Transition in Uniaxial Compression of Polymer Glasses
,”
J. Polym. Sci. Part B: Polym. Phys.
,
57
(
12
), pp.
758
770
.
31.
Chen
,
C.
,
Gnanou
,
Y.
, and
Feng
,
X.
,
2022
, “
Organocatalytic Selective Coupling of Episulfides With Carbon Disulfide for the Synthesis of Poly(Trithiocarbonate)s and Cyclic Trithiocarbonates
,”
Polym. Chem.
,
13
(
23
), pp.
3471
3478
.
32.
National Center for Biotechnology Information
,
2024
, “
PubChem Compound Summary for CID 8879, Allyl Diglycol Carbonate
,” https://pubchem.ncbi.nlm.nih.gov/compound/8879, Accessed January 26, 2024.
33.
National Center for Biotechnology Information
,
2024
, “
PubChem Compound Summary for CID 169944, Epoxy Resin
,” https://pubchem.ncbi.nlm.nih.gov/compound/Epoxy-resin, Accessed January 26, 2024.
34.
Maurotto
,
A.
,
Siemers
,
C.
,
Muhammad
,
R.
,
Roy
,
A.
, and
Silberschmidt
,
V.
,
2014
, “
Ti Alloy With Enhanced Machinability in UAT Turning
,”
Metall. Mater. Trans. A: Phys. Metall. Mater. Sci.
,
45
(
6
), pp.
2768
2775
.
35.
Shyha
,
I.
,
Gariani
,
S.
,
El-Sayed
,
M. A.
, and
Huo
,
D.
,
2018
, “
Analysis of Microstructure and Chip Formation When Machining Ti-6Al-4V
,”
Metals
,
8
(
3
), p.
185
.
36.
Ye
,
G. G.
,
Xue
,
S. F.
,
Ma
,
W.
, and
Dai
,
L. H.
,
2017
, “
Onset and Evolution of Discontinuously Segmented Chip Flow in Ultra-High-Speed Cutting Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
,
88
(
1–4
), pp.
1161
1174
.
37.
Sharma
,
S.
, and
Meena
,
A.
,
2021
, “
Microstructure Induced Shear Instability Criterion During High-Speed Machining of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
143
(
6
), p.
061001
.
38.
Ramalingam
,
S.
, and
Hazra
,
J.
,
1973
, “
Dynamic Shear Stress—Analysis of Single Crystal Machining Studies
,”
ASME J. Eng. Ind.
,
95
(
4
), pp.
939
944
.
39.
Rodríguez
,
J. M.
,
Carbonell
,
J. M.
, and
Jonsén
,
P.
,
2020
, “
Numerical Methods for the Modelling of Chip Formation
,”
Arch. Comput. Methods Eng.
,
27
(
2
), pp.
387
412
.
You do not currently have access to this content.