Abstract

Magnetorheological shear thickening polishing (MRSTP) is a novel hybrid polishing method that combines the magnetorheological effect and the shear thickening effect. It has great potential for ultra-precision machining of complex surfaces. However, the absence of a correlation between material removal and the rheological properties of the polishing media has posed difficulties for further improvements in polishing efficiency and quality in MRSTP. In this work, a material removal model for MRSTP was established based on the principles of magneto-hydrodynamics, non-Newtonian fluid kinematics, and microscopic contact mechanics. This model combines the material removal model for a single abrasive particle with a statistical model of active grits. When comparing the experimental and theoretical results, it became evident that the developed material removal model can accurately predict the material removal depth of the workpiece under different processing parameters such as rotational speed of the rotary table and magnetic field strength. The average prediction error was found to be less than 5.0%. Furthermore, the analysis of the rheological behavior and fluid dynamic pressure of the polishing media reveals the coupling effects between the magnetic, stress, and flow fields. This provides theoretical guidance for the actual processing of MRSTP. Finally, the maximum material removal rate of 3.3 μm/h was achieved on the cylindrical surface of the Ti–6Al–4V workpiece using the MRSTP method. These results demonstrate that the MRSTP method holds great potential in the field of ultra-precision machining of difficult-to-machine materials.

References

1.
Mizoue
,
Y.
,
Sencer
,
B.
, and
Beaucamp
,
A.
,
2020
, “
Identification and Optimization of CNC Dynamics in Time-Dependent Machining Processes and Its Validation to Fluid jet Polishing
,”
Int. J. Mach. Tools Manuf.
,
159
, p.
103648
.
2.
Liu
,
Y. F.
,
Ouyang
,
W. T.
,
Wu
,
H. C.
,
Xu
,
Z. F.
,
Sheng
,
L. Y.
,
Zou
,
Q.
,
Zhang
,
M. N.
,
Zhang
,
W. W.
, and
Jiao
,
J. K.
,
2022
, “
Improving Surface Quality and Superficial Microstructure of LDED Inconel 718 Superalloy Processed by Hybrid Laser Polishing
,”
J. Mater. Process. Technol.
,
300
, p.
117428
.
3.
Zhang
,
Y. F.
,
Feng
,
J. B.
,
Zhao
,
Y. Y.
,
Rao
,
M. Q.
, and
Yin
,
Y. H.
,
2023
, “
Towards Understanding and Restraining the Mechanical Relaxation Effect in Polishing Silicon Carbide With a Detachable Bonnet Tool
,”
Int. J. Mech. Sci.
,
246
, p.
107962
.
4.
Zhang
,
Z. Y.
,
Shi
,
Z. F.
,
Du
,
Y. F.
,
Yu
,
Z. J.
,
Guo
,
L. C.
, and
Guo
,
D. M.
,
2018
, “
A Novel Approach of Chemical Mechanical Polishing for a Titanium Alloy Using an Environment-Friendly Slurry
,”
Appl. Surf. Sci.
,
427
, pp.
409
415
.
5.
Li
,
M.
,
Lyu
,
B. H.
,
Yuan
,
J. L.
,
Dong
,
C. C.
, and
Dai
,
W. T.
,
2015
, “
Shear-Thickening Polishing Method
,”
Int. J. Mach. Tools Manuf.
,
94
, pp.
88
99
.
6.
Span
,
J.
,
Koshy
,
P.
,
Klocke
,
F.
,
Müller
,
S.
, and
Coelho
,
R.
,
2017
, “
Dynamic Jamming in Dense Suspensions: Surface Finishing and Edge Honing Applications
,”
CIRP Ann.
,
66
(
1
), pp.
321
324
.
7.
Guo
,
Y. F.
,
Yin
,
S. H.
,
Ohmori
,
H.
,
Li
,
M.
,
Chen
,
F. J.
, and
Huang
,
S.
,
2022
, “
A Novel High Efficiency Magnetorheological Polishing Process Excited by Halbach Array Magnetic Field
,”
Precis. Eng.
,
74
, pp.
175
185
.
8.
Yamaguchi
,
H.
,
Fergani
,
O.
, and
Wu
,
P. Y.
,
2017
, “
Modification Using Magnetic Field-Assisted Finishing of the Surface Roughness and Residual Stress of Additively Manufactured Components
,”
CIRP Ann.
,
66
(
1
), pp.
305
308
.
9.
Zhang
,
L.
,
Ding
,
C.
,
Han
,
Y. J.
,
Zhang
,
Z. R.
, and
Fan
,
C.
,
2022
, “
Investigation Into a Novel Pulsating Cavitation Air Jet Polishing Method for Ti-6Al-4V Alloy
,”
Tribol. Int.
,
175
, p.
107837
.
10.
Ma
,
C. P.
,
Guan
,
Y. C.
, and
Zhou
,
W.
,
2017
, “
Laser Polishing of Additive Manufactured Ti Alloys
,”
Opt. Lasers Eng.
,
93
, pp.
171
177
.
11.
Liang
,
C. L.
,
Liu
,
W. L.
,
Li
,
S. S.
,
Kong
,
H.
,
Zhang
,
Z. F.
, and
Song
,
Z. T.
,
2016
, “
A Nano-Scale Mirror-Like Surface of Ti-6Al-4V Attained by Chemical Mechanical Polishing
,”
Chin. Phys. B
,
25
(
5
), p.
058301
.
12.
Wang
,
J. H.
,
Lyu
,
B. H.
,
Jiang
,
L.
,
Shao
,
Q.
,
Deng
,
C. B.
,
Zhou
,
Y. F.
,
Wang
,
J. H.
, and
Yuan
,
J. L.
,
2021
, “
Chemistry Enhanced Shear Thickening Polishing of Ti-6Al-4V
,”
Precis. Eng.
,
72
, pp.
59
68
.
13.
Parameswari
,
G.
,
Jain
,
V. K.
,
Ramkumar
,
J.
, and
Nagdeve
,
L.
,
2019
, “
Experimental Investigations Into Nanofinishing of Ti6Al4V Flat Disc Using Magnetorheological Finishing Process
,”
Int. J. Adv. Manuf. Technol.
,
100
(
5–8
), pp.
1123
1135
.
14.
Barman
,
A.
, and
Das
,
M.
,
2017
, “
Design and Fabrication of a Novel Polishing Tool for Finishing Freeform Surfaces in Magnetic Field Assisted Finishing (MFAF) Process
,”
Precis. Eng.
,
49
, pp.
61
68
.
15.
Barman
,
A.
, and
Das
,
M.
,
2019
, “
Toolpath Generation and Finishing of Bio-Titanium Alloy Using Novel Polishing Tool in MFAF Process
,”
Int. J. Adv. Manuf. Technol.
,
100
(
5–8
), pp.
1123
1135
.
16.
Fan
,
Z. H.
,
Tian
,
Y. B.
,
Zhou
,
Q.
, and
Shi
,
C.
,
2020
, “
Enhanced Magnetic Abrasive Finishing of Ti-6Al-4V Using Shear Thickening Fluids Additives
,”
Precis. Eng.
,
64
, pp.
300
306
.
17.
Fan
,
Z. H.
,
Tian
,
Y. B.
,
Liu
,
Z. Q.
,
Shi
,
C.
, and
Zhao
,
Y. G.
,
2019
, “
Investigation of a Novel Finishing Tool in Magnetic Field Assisted Finishing for Titanium Alloy Ti-6Al-4V
,”
J. Manuf. Processes
,
43
, pp.
74
82
.
18.
Fan
,
Z. H.
,
Tian
,
Y. B.
,
Zhou
,
Q.
, and
Shi
,
C.
,
2020
, “
A Magnetic Shear Thickening Media in Magnetic Field-Assisted Surface Finishing
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
234
(
6–7
), pp.
1069
1072
.
19.
Zhou
,
Q.
,
Tian
,
Y. B.
,
Fan
,
Z. H.
,
Qian
,
C.
, and
Sun
,
Z. G.
,
2021
, “
Study on Preparation and Processing Characteristics of Magnetic Shear Thickening Finishing Media
,”
Surf. Technol.
,
5
(
7
), pp.
367
375
.
20.
Qian
,
C.
,
Tian
,
Y. B.
,
Fan
,
Z. H.
,
Sun
,
Z. G.
, and
Ma
,
Z.
,
2022
, “
Investigation on Rheological Characteristics of Magnetorheological Shear Thickening Fluids Mixed With Micro CBN Abrasive Particles
,”
Smart Mater. Struct.
,
31
(
9
), p.
095004
.
21.
Sun
,
Z. G.
,
Fan
,
Z. H.
,
Tian
,
Y. B.
,
Prakash
,
C.
,
Gu
,
J.
, and
Li
,
L.
,
2022
, “
Post-Processing of Additively Manufactured Microstructures Using Alternating-Magnetic Field-Assisted Finishing
,”
J. Mater. Res. Technol.
,
19
, pp.
1922
1933
.
22.
Sun
,
Z. G.
,
Fan
,
Z. H.
,
Tian
,
Y. B.
,
Qian
,
C.
, and
Ma
,
Z.
,
2022
, “
Investigation on Magnetorheological Shear Thickening Finishing (MSTF) With Radially Slotted Magnetic Pole for Free-Form Surface
,”
Int. J. Adv. Manuf. Technol.
,
123
(
9–10
), pp.
3313
3327
.
23.
Sun
,
Z. G.
,
Tian
,
Y. B.
,
Fan
,
Z. H.
,
Qian
,
C.
,
Ma
,
Z.
,
Li
,
L.
,
Yu
,
H. L.
, and
Guo
,
J.
,
2022
, “
Experimental Investigations on Enhanced Alternating-Magnetic Field-Assisted Finishing of Stereolithographic 3D Printing Zirconia Ceramics
,”
Ceram. Int.
,
48
(
24
), pp.
36609
36619
.
24.
Wang
,
C. J.
,
Cheung
,
C. F.
, and
Liu
,
M. Y.
,
2017
, “
Numerical Modeling and Experimentation of Three Dimensional Material Removal Characteristics in Fluid Jet Polishing
,”
Int. J. Mech. Sci.
,
133
, pp.
568
577
.
25.
Zhang
,
J.
,
Wang
,
H.
,
Kumar
,
A. S.
, and
Jin
,
M. S.
,
2020
, “
Experimental and Theoretical Study of Internal Finishing by a Novel Magnetically Driven Polishing Tool
,”
Int. J. Mach. Tools Manuf.
,
153
, p.
103552
.
26.
Deng
,
J. Y.
,
Zhang
,
Q. X.
,
Lu
,
J. B.
,
Yan
,
Q. S.
,
Pan
,
J. S.
, and
Chen
,
R.
,
2021
, “
Prediction of the Surface Roughness and Material Removal Rate in Chemical Mechanical Polishing of Single-Crystal SiC Via a Back-Propagation Neural Network
,”
Precis. Eng.
,
72
, pp.
102
110
.
27.
Yao
,
W. F.
,
Chu
,
Q. Q.
,
Lyu
,
B. H.
,
Wang
,
C. W.
,
Shao
,
Q.
,
Feng
,
M.
, and
Wu
,
Z.
,
2022
, “
Modeling of Material Removal Based on Multi-Scale Contact in Cylindrical Polishing
,”
Int. J. Mech. Sci.
,
223
, p.
107287
.
28.
Liu
,
J. B.
,
Li
,
X. Y.
,
Zhang
,
Y. F.
,
Tian
,
D.
,
Ye
,
M. H.
, and
Wang
,
C.
,
2020
, “
Predicting the Material Removal Rate (MRR) in Surface Magnetorheological Finishing (MRF) Based on the Synergistic Effect of Pressure and Shear Stress
,”
Appl. Surf. Sci.
,
504
, p.
14492
.
29.
Zhu
,
W. L.
, and
Beaucamp
,
A.
,
2020
, “
Non-Newtonian Fluid Based Contactless Sub-Aperture Polishing
,”
CIRP Ann.
,
69
(
1
), pp.
293
296
.
30.
Zhu
,
W. L.
, and
Beaucamp
,
A.
,
2022
, “
Generic Three-Dimensional Model of Freeform Surface Polishing With Non-Newtonian Fluids
,”
Int. J. Mach. Tools Manuf.
,
172
, p.
103837
.
31.
Lin
,
J.
,
Lu
,
R. F.
,
Lin
,
M. C.
, and
Wang
,
P. Y.
,
2013
, “
Squeeze Film Characteristics of Parallel Circular Disks Lubricated by Ferrofluids With Non-Newtonian Couple Stresses
,”
Tribol. Int.
,
61
, pp.
56
61
.
32.
Gunakala
,
S. R.
,
Job
,
V. M.
,
Murthy
,
P. V. S. N.
, and
Sakhamuri
,
S.
,
2023
, “
Influence of Alternating Magnetic Field on Non-Newtonian Blood Erfusion and Transport of Nanoparticles in Tissues With Embedded Lood Vessel During Hyperthermia
,”
Ain. Shams. Eng. J.
,
14
(
1
), p.
101831
.
33.
Lin
,
J.
,
Liang
,
L. J.
,
Lin
,
M. C.
, and
Hu
,
S. T.
,
2015
, “
Effects of Circumferential and Radial Rough Surfaces in a Non-Newtonian Magnetic Fluid Lubricated Squeeze Film
,”
Appl. Math. Modell.
,
39
(
21
), pp.
6743
6750
.
34.
Sfyris
,
D.
, and
Chasalevris
,
A.
,
2012
, “
An Exact Analytical Solution of the Reynolds Equation for the Finite Journal Bearing Lubrication
,”
Tribol. Int.
,
55
, pp.
46
58
.
35.
Saranya
,
S.
, and
Al-Mdallal
,
Q. M.
,
2020
, “
Non-Newtonian Ferrofluid Flow Over an Unsteady Contracting Cylinder Under the Influence of Aligned Magnetic Field
,”
Case Stud. Therm. Eng.
,
21
, p.
100679
.
36.
Li
,
M.
,
Karpuschewski
,
B.
,
Ohmori
,
H.
,
Riemer
,
O.
,
Wang
,
Y.
, and
Dong
,
T.
,
2021
, “
Adaptive Shearing-Gradient Thickening Polishing (AS-GTP) and Subsurface Damage Inhibition
,”
Int. J. Mach. Tools Manuf.
,
160
, p.
103651
.
37.
Zhou
,
D. D.
,
Li
,
X. Y.
,
Huang
,
X. M.
, and
Ming
,
Y.
,
2023
, “
Theoretical and Experimental Investigations on Material Removal Characteristics of Small-Diameter Aspherical Silicon Carbide Mould With Weak Magnetization-Enhanced Force-Rheological Polishing
,”
Tribol. Int.
,
179
, p.
108106
.
38.
Zhou
,
D. D.
,
Huang
,
X. M.
,
Li
,
X. Y.
, and
Ming
,
Y.
,
2023
, “
Analysis of Subsurface Damage Inhibition in Magnetization-Enhanced Force-Rheological Polishing
,”
Tribol. Int.
,
179
, p.
108105
.
39.
Zhu
,
Z. H.
,
Huang
,
P.
,
To
,
S.
,
Zhu
,
L. M.
, and
Zhu
,
Z. W.
,
2023
, “
Fast-Tool-Servo-Controlled Shear-Thickening Micropolishing
,”
Int. J. Mach. Tools Manuf.
,
184
, p.
103968
.
40.
Li
,
M.
,
Liu
,
M. H.
,
Riemer
,
O.
,
Karpuschewski
,
B.
, and
Tang
,
C.
,
2021
, “
Origin of Material Removal Mechanism in Shear Thickening-Chemical Polishing
,”
Int. J. Mach. Tools Manuf.
,
170
, p.
103800
.
41.
Wei
,
H. B.
,
Peng
,
C.
,
Gao
,
H.
,
Wang
,
X. P.
, and
Wang
,
X. Y.
,
2019
, “
On Establishment and Validation of a New Predictive Model for Material Removal in Abrasive Flow Machining
,”
Int. J. Mach. Tools Manuf.
,
138
, pp.
66
79
.
42.
Wei
,
H. B.
,
Gao
,
H.
, and
Wang
,
X. Y.
,
2019
, “
Development of Novel Guar Gum Hydrogel Based Media for Abrasive Flow Machining: Shear-Thickening Behavior and Finishing Performance
,”
Int. J. Mech. Sci.
,
157–158
, pp.
758
772
.
43.
Dong
,
X. X.
,
Cao
,
Q. Q.
,
Gu
,
Z. Q.
,
Zhu
,
T. Y.
,
Lu
,
C. D.
,
Jin
,
M. S.
, and
Wang
,
H.
,
2023
, “
Fine Finishing of Internal Surfaces Using Cassava Starch Medium
,”
J. Mater. Process. Technol.
,
325
, p.
117918
.
44.
Wang
,
G. L.
,
Wang
,
Y. Q.
, and
Xu
,
Z. X.
,
2009
, “
Modeling and Analysis of the Material Removal Depth for Stone Polishing
,”
J. Mater. Process. Technol.
,
209
(
5
), pp.
2453
2463
.
45.
Miao
,
C. L.
,
Shafrir
,
S. N.
,
Lambropoulos
,
J. C.
,
Mici
,
J.
, and
Jacobs
,
S. D.
,
2009
, “
Shear Stress in Magnetorheological Finishing for Glasses
,”
Appl. Opt.
,
48
(
13
), pp.
2585
2594
.
46.
Gürgen
,
S.
,
Kuşhan
,
M. C.
, and
Li
,
W. H.
,
2017
, “
Shear Thickening Fluids in Protective Applications: A Review
,”
Prog. Polym. Sci.
,
75
, pp.
48
72
.
47.
Seto
,
R.
,
Mari
,
R.
,
Morris
,
J. F.
, and
Denn
,
M. M.
,
2013
, “
Discontinuous Shear Thickening of Frictional Hard-Sphere Suspensions
,”
Phys. Rev. Lett.
,
111
(
21
), p.
218301
.
48.
Lin
,
NY C
,
Guy
,
B. M.
,
Hermes
,
M.
,
Ness
,
C.
,
Sun
,
J.
,
Poon
,
WC K
, and
Cohen
,
I.
,
2015
, “
Hydrodynamic and Contact Contributions to Continuous Shear Thickening in Colloidal Suspensions
,”
Phys. Rev. Lett.
,
115
(
22
), p.
228304
.
49.
Bossis
,
G.
, and
Brady
,
J. F.
,
1989
, “
The Rheology of Brownian Suspensions
,”
J. Chem. Phys.
,
91
(
3
), pp.
1866
1874
.
50.
Yang
,
Q. Q.
,
Huang
,
P.
, and
Fang
,
Y. F.
,
2016
, “
A Novel Reynolds Equation of Non-Newtonian Fluid for Lubrication Simulation
,”
Tribol. Int.
,
94
, pp.
458
463
.
51.
Gürgen
,
S.
, and
Sert
,
A.
,
2019
, “
Polishing Operation of a Steel Bar in a Shear Thickening Fluid Medium
,”
Composites, Part B
,
175
, p.
107127
.
52.
Li
,
M.
,
Lv
,
B. H.
,
Yuan
,
J. L.
,
Dong
,
C. C.
, and
Dai
,
W. T.
,
2016
, “
Material Removal Mathematics Model of Shear Thickening Polishing
,”
J. Mech. Eng.
,
52
(
7
), pp.
142
151
.
53.
Ming
,
Y.
,
Huang
,
X.
,
Zhou
,
D.
, and
Li
,
X.
,
2022
, “
A Novel Non-Newtonian Fluid Polishing Technique for Zirconia Ceramics Based on the Weak Magnetorheological Strengthening Thickening Effect
,”
Ceram. Int.
,
48
(
5
), pp.
7192
7203
.
You do not currently have access to this content.