Abstract

Additive manufacturing (AM) has revolutionized the way we design, prototype, and produce complex parts with unprecedented geometries. However, the lack of understanding of the functional properties of 3D-printed parts has hindered their adoption in critical applications where reliability and durability are paramount. This paper proposes a novel approach to the functional qualification of 3D-printed parts via physical and digital twins. Physical twins are parts that are printed under the same process conditions as the functional parts and undergo a wide range of (destructive) tests to determine their mechanical, thermal, and chemical properties. Digital twins are virtual replicas of the physical twins that are generated using finite element analysis (FEA) simulations based on the 3D shape of the part of interest. We propose a novel approach to transfer learning, specifically designed for the fusion of diverse, unstructured 3D shape data and process inputs from multiple sources. The proposed approach has demonstrated remarkable results in predicting the functional properties of 3D-printed lattice structures. From an engineering standpoint, this paper introduces a comprehensive and innovative methodology for the functional qualification of 3D-printed parts. By combining the strengths of physical and digital twins with transfer learning, our approach opens up possibilities for the widespread adoption of 3D printing in safety-critical applications. Methodologically, this work presents a significant advancement in transfer learning techniques, specifically addressing the challenges of multi-source (e.g., digital and physical twins) and multi-input (e.g., 3D shapes and process variables) transfer learning.

References

1.
Voas
,
J.
,
Mell
,
P.
, and
Piroumian
,
V.
,
2021
,
Considerations for Digital Twin Technology and Emerging Standards
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
2.
Mishra
,
P. K.
, and
Senthil
,
P.
,
2020
, “
Prediction of In-Plane Stiffness of Multi-Material 3D Printed Laminate Parts Fabricated by FDM Process Using CLT and Its Mechanical Behaviour Under Tensile Load
,”
Mater. Today Commun.
,
23
, p.
100955
.
3.
Zeng
,
C.
,
Liu
,
L.
,
Bian
,
W.
,
Leng
,
J.
, and
Liu
,
Y.
,
2021
, “
Compression Behavior and Energy Absorption of 3D Printed Continuous Fiber Reinforced Composite Honeycomb Structures With Shape Memory Effects
,”
Addit. Manuf.
,
38
, p.
101842
.
4.
Li
,
S.
,
Liu
,
Z.
,
Shim
,
V. P. W.
,
Guo
,
Y.
,
Sun
,
Z.
,
Li
,
X.
, and
Wang
,
Z.
,
2020
, “
In-Plane Compression of 3D-Printed Self-Similar Hierarchical Honeycombs–Static and Dynamic Analysis
,”
Thin-Walled Struct.
,
157
, p.
106990
.
5.
Han
,
X.
,
Yan
,
J.
,
Liu
,
M.
,
Huo
,
L.
, and
Li
,
J.
,
2022
, “
Experimental Study on Large-Scale 3D Printed Concrete Walls Under Axial Compression
,”
Autom. Constr.
,
133
, p.
103993
.
6.
Cao
,
X.
,
Duan
,
S.
,
Liang
,
J.
,
Wen
,
W.
, and
Fang
,
D.
,
2018
, “
Mechanical Properties of an Improved 3D-Printed Rhombic Dodecahedron Stainless Steel Lattice Structure of Variable Cross Section
,”
Int. J. Mech. Sci.
,
145
, pp.
53
63
.
7.
Lesueur
,
M.
,
Poulet
,
T.
, and
Veveakis
,
M.
,
2021
, “
Predicting the Yield Strength of a 3D Printed Porous Material From Its Internal Geometry
,”
Addit. Manuf.
,
44
, p.
102061
.
8.
Hanon
,
M. M.
,
Marczis
,
R.
, and
Zsidai
,
L.
,
2021
, “
Influence of the 3D Printing Process Settings on Tensile Strength of PLA and HT-PLA
,”
Period. Polytech. Mech. Eng.
,
65
(
1
), pp.
38
46
.
9.
Belhabib
,
S.
, and
Guessasma
,
S.
,
2017
, “
Compression Performance of Hollow Structures: From Topology Optimisation to Design 3D Printing
,”
Int. J. Mech. Sci.
,
133
, pp.
728
739
.
10.
Abbot
,
D.
,
Kallon
,
D.
,
Anghel
,
C.
, and
Dube
,
P.
,
2019
, “
Finite Element Analysis of 3D Printed Model Via Compression Tests
,”
Proc. Manuf.
,
35
, pp.
164
173
.
11.
Amosy
,
O.
, and
Chechik
,
G.
,
2022
, “
Coupled Training for Multi-Source Domain Adaptation
,”
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
,
Waikoloa, HI
,
Jan. 4–8
, pp.
420
429
.
12.
Ren
,
C.-X.
,
Liu
,
Y.-H.
,
Zhang
,
X.-W.
, and
Huang
,
K.-K.
,
2022
, “
Multi-Source Unsupervised Domain Adaptation Via Pseudo Target Domain
,”
IEEE Trans. Image Process.
,
31
, pp.
2122
2135
.
13.
Sun
,
S.
,
Shi
,
H.
, and
Wu
,
Y.
,
2015
, “
A Survey of Multi-Source Domain Adaptation
,”
Inf. Fusion
,
24
, pp.
84
92
.
14.
Gunasegaram
,
D. R.
,
Murphy
,
A. B.
,
Barnard
,
A.
,
DebRoy
,
T.
,
Matthews
,
M. J.
,
Ladani
,
L.
, and
Gu
,
D.
,
2021
, “
Towards Developing Multiscale-Multiphysics Models and Their Surrogates for Digital Twins of Metal Additive Manufacturing
,”
Addit. Manuf.
,
46
, p.
102089
.
15.
Knapp
,
G.
,
Mukherjee
,
T.
,
Zuback
,
J. S.
,
Wei
,
H. L.
,
Palmer
,
T. A.
,
De
,
A.
, and
DebRoy
,
T.
,
2017
, “
Building Blocks for a Digital Twin of Additive Manufacturing
,”
Acta Mater.
,
135
, pp.
390
399
.
16.
Cheng
,
L.
,
Wang
,
K.
, and
Tsung
,
F.
,
2020
, “
A Hybrid Transfer Learning Framework for In-Plane Freeform Shape Accuracy Control in Additive Manufacturing
,”
IISE Trans.
,
53
(
3
), pp.
298
312
.
17.
Wang
,
Z.
,
Zhang
,
Y.
,
Orquera
,
M.
,
Millet
,
D.
, and
Bernard
,
A.
,
2023
, “
A New Hybrid Generative Design Method for Functional & Lightweight Structure Generation in Additive Manufacturing
,”
Proc. CIRP
,
119
, pp.
66
71
.
18.
Pandiyan
,
V.
,
Drissi-Daoudi
,
R.
,
Shevchik
,
S.
,
Masinelli
,
G.
,
Le-Quang
,
T.
,
Logé
,
R.
, and
Wasmer
,
K.
,
2022
, “
Deep Transfer Learning of Additive Manufacturing Mechanisms Across Materials in Metal-Based Laser Powder Bed Fusion Process
,”
J. Mater. Process. Technol.
,
303
, p.
117531
.
19.
Tang
,
Y.
,
Dehaghani
,
M. R.
, and
Wang
,
G. G.
,
2022
, “
Review of Transfer Learning in Modeling Additive Manufacturing Processes
,”
Addit. Manuf.
,
61
, p.
103357
.
20.
Zhang
,
L.
,
Chen
,
X.
,
Zhou
,
W.
,
Cheng
,
T.
,
Chen
,
L.
,
Guo
,
Z.
,
Han
,
B.
, et al
,
2020
, “
Digital Twins for Additive Manufacturing: A State-of-the-Art Review
,”
Appl. Sci.
,
10
(
23
), p.
8350
.
21.
Biehler
,
M.
,
Kulkarni
,
A.
,
Li
,
J.
, and
Shi
,
J.
,
2023
, “Multi-modal: Multi-fidelity Multi-modality 3D Shape Modeler,” Submitted to
IEEE Trans. Autom. Sci. Eng.
22.
Law
,
A. C. C.
,
Wang
,
R.
,
Chung
,
J.
,
Kucukdeger
,
E.
,
Liu
,
Y.
,
Barron
,
T.
,
Johnson
,
B. N.
, et al
,
2023
, “
Process Parameter Optimization for Reproducible Fabrication of Layer Porosity Quality of 3D-Printed Tissue Scaffold
,”
J. Intell. Manuf.
, pp.
1
20
.
23.
Ye
,
Z.
,
Liu
,
C.
,
Tian
,
W.
, and
Kan
,
C.
,
2021
, “
In-Situ Point Cloud Fusion for Layer-Wise Monitoring of Additive Manufacturing
,”
J. Manuf. Syst.
,
61
, pp.
210
222
.
24.
Lyu
,
J.
,
Akhavan Taheri Boroujeni
,
J.
, and
Manoochehri
,
S.
,
2021
, “
In-Situ Laser-Based Process Monitoring and In-Plane Surface Anomaly Identification for Additive Manufacturing Using Point Cloud and Machine Learning
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, vol.
85376
, p.
V002T02A030
.
25.
Biehler
,
M.
,
Kulkarni
,
A.
,
Li
,
J.
, and
Shi
,
J.
PLURAL: 3D Point Cloud Transfer Learning Via Contrastive Learning With Augmentations
,” submitted to IEEE Transactions on Automation Science and Engineering, Preprint 2023.
26.
Yang
,
J.
,
Nguyen
,
M. N.
,
San
,
P. P.
,
Li
,
X. L.
, and
Krishnaswamy
,
S.
,
2015
, “
Deep Convolutional Neural Networks on Multichannel Time Series for Human Activity Recognition
,”
Twenty-Fourth International Joint Conference on Artificial Intelligence
,
Buenos Aires, Argentina
,
July 25–31
.
27.
Valdarrama
,
S.
, 2021, “
Convolutional Autoencoder for Image Denoising
,” https://keras.io/examples/vision/autoencoder/, Accessed October 10, 2023.
28.
Letcher
,
T.
, and
Waytashek
,
M.
,
2014
, “
Material Property Testing of 3D-Printed Specimen in PLA on an Entry-Level 3D Printer
,”
ASME International Mechanical Engineering Congress and Exposition
,
American Society of Mechanical Engineers
, Vol.
46438
, p.
V02AT02A014
.
29.
Wu
,
C.
,
Bi
,
X.
,
Pfrommer
,
J.
,
Cebulla
,
A.
,
Mangold
,
S.
, and
Beyerer
,
J.
,
2023
, “
Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial Application Case on Autonomous Disassembly
,”
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
,
Waikoloa, HI
,
Jan. 3–7
, pp.
4531
4540
.
30.
Li
,
R.
,
Li
,
X.
,
Heng
,
P.-A.
, and
Fu
,
C.-W.
,
2020
, “
PointAugment: An Auto-Augmentation Framework for Point Cloud Classification
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Snowmass Village, CO
,
Mar. 2–5
, pp.
6378
6387
.
You do not currently have access to this content.