Abstract

Decision support methods and tools have been developed to aid in improving product sustainability performance during design. However, these approaches are often developed for domain experts and not well-suited for non-expert decision makers (e.g., engineering students and engineering practitioners), who do not possess specialized knowledge in sustainability analysis of product designs and manufacturing processes. The objective of this research is to facilitate the sustainability performance analysis of manufacturing processes and systems through unit manufacturing process (UMP) modeling within an easy-to-use, publicly-available product design, and manufacturing analysis tool. To achieve this objective, a sustainability assessment framework is developed that considers a cradle-to-gate life cycle scope and has four phases: (1) product development, (2) supply chain configuration, (3) manufacturing process design, and (4) manufacturing process and system (MaPS) sustainability analysis. To implement this framework and to address the identified limitations of existing tools, a proof-of-concept MaPS sustainability analysis tool is developed as a spreadsheet software tool. The tool supports the evaluation of environmental (energy and associated carbon footprint), economic (the cost of goods sold), and social (worker safety) impacts. While this study focuses on the technical aspects of the research, the authors investigate associated educational aspects in a separate study and report tool operational performance evaluation by undergraduate and graduate engineering students. Study participants found the tool easy to use and useful in completing sustainability assessment tasks in product design and manufacturing. To build upon this research, the developed framework and tool can be expanded to consider other phases of the product life cycle. Moreover, key software tool operational characteristics and graphical user interfaces should be investigated to improve efficiency, effectiveness, satisfaction, and learnability of the MaPS sustainability analysis tool.

References

1.
Ramani
,
K.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
,
Sutherland
,
J.
,
Handwerker
,
C.
,
Choi
,
J. K.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Integrated Sustainable Life Cycle Design: A Review
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091004
.
2.
Shankar Raman
,
A. R.
,
Haapala
,
K. R.
,
Raoufi
,
K.
,
Linke
,
B. S.
,
Bernstein
,
W. Z.
, and
Morris
,
K. C.
,
2020
, “
Defining Near-Term to Long-Term Research Opportunities to Advance Metrics, Models, and Methods for Smart and Sustainable Manufacturing
,”
Smart Sustain. Manuf. Syst.
,
4
(
2
), p.
20190047
.
3.
Ullman
,
D.
,
2003
,
The Mechanical Design Process
, 3rd ed.,
McGraw-Hill
,
New York
.
4.
Pham
,
D. T.
,
Pham
,
P. T. N.
, and
Thomas
,
A.
,
2008
, “
Integrated Production Machines and Systems—Beyond Lean Manufacturing
,”
J. Manuf. Technol. Manag.
,
19
(
6
), pp.
695
711
.
5.
Raoufi
,
K.
,
Manoharan
,
S.
, and
Haapala
,
K. R.
,
2019
, “
Synergizing Product Design Information and Unit Manufacturing Process Analysis to Support Sustainable Engineering Education
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021018
.
6.
Rossi
,
M.
,
Germani
,
M.
, and
Zamagni
,
A.
,
2016
, “
Review of Ecodesign Methods and Tools. Barriers and Strategies for an Effective Implementation in Industrial Companies
,”
J. Clean. Prod.
,
129
(
Suppl. C
), pp.
361
373
.
7.
Kong
,
L.
,
Wang
,
L.
,
Li
,
F.
, and
Guo
,
J.
,
2022
, “
Toward Product Green Design of Modeling, Assessment, Optimization, and Tools: A Comprehensive Review
,”
Int. J. Adv. Manuf. Technol.
,
122
(
5
), pp.
2217
2234
.
8.
Hawkins
,
N. C.
,
Patterson
,
R. W.
,
Mogge
,
J.
, and
Yosie
,
T. F.
,
2014
, “
Building a Sustainability Road Map for Engineering Education
,”
ACS Sustain. Chem. Eng.
,
2
(
3
), pp.
340
343
.
9.
Esmaeilian
,
B.
,
Behdad
,
S.
, and
Wang
,
B.
,
2016
, “
The Evolution and Future of Manufacturing: A Review
,”
J. Manuf. Syst.
,
39
, pp.
79
100
.
10.
Garetti
,
M.
, and
Taisch
,
M.
,
2012
, “
Sustainable Manufacturing: Trends and Research Challenges
,”
Prod. Plann. Contr.
,
23
(
2–3
), pp.
83
104
.
11.
Raoufi
,
K.
,
Shankar Raman
,
A.
,
Haapala
,
K. R.
, and
Paul
,
B. K.
,
2018
, “
Benchmarking Undergraduate Manufacturing Engineering Curricula in the United States
,”
Procedia Manufacturing, in 46th SME North American Manufacturing Research Conference, NAMRC 46
,
College Station, TX
,
June 18–22
, Vol. 26, pp.
1378
1387
.
12.
Gutierrez-Bucheli
,
L.
,
Kidman
,
G.
, and
Reid
,
A.
,
2022
, “
Sustainability in Engineering Education: A Review of Learning Outcomes
,”
J. Clean. Prod.
,
330
, p.
129734
.
13.
Haapala
,
K. R.
,
Raoufi
,
K.
,
Kim
,
K. Y.
,
Orazem
,
P. F.
,
Houck
,
C. S.
,
Johnson
,
M. D.
,
Okudan Kremer
,
G. E.
,
Rickli
,
J. L.
,
Sciammarella
,
F. M.
, and
Ward
,
K.
,
2022
, “
Prioritizing Actions and Outcomes for Community-Based Future Manufacturing Workforce Development and Education
,”
J. Integr. Des. Process Sci.
,
26
(
3–4
), pp.
415
441
.
14.
ABET
,
2016
, “
Criteria for Accrediting Engineering Programs (Effective for Reviews During the 2017–2018 Accreditation Cycle)
,”
Baltimore, MD
. http://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2017-2018/, Accessed September 8, 2017.
15.
Raoufi
,
K.
,
Paul
,
B. K.
, and
Haapala
,
K. R.
,
2020
, “
Development and Implementation of a Framework for Adaptive Undergraduate Curricula in Manufacturing Engineering
,”
Smart Sustain. Manuf. Syst.
,
5
(
2
), pp.
60
79
.
16.
Kremer
,
G. E.
,
Haapala
,
K.
,
Murat
,
A.
,
Chinnam
,
R. B.
,
Kim
,
K. Y.
,
Monplaisir
,
L.
, and
Lei
,
T.
,
2016
, “
Directions for Instilling Economic and Environmental Sustainability Across Product Supply Chains
,”
J. Clean. Prod.
,
112
(
Pt. 3
), pp.
2066
2078
.
17.
Khan
,
M. T. H.
,
Raoufi
,
K.
,
Okudan Kremer
,
G.
,
Park
,
K.
,
Reza
,
T.
,
Psenka
,
C.
,
Schmidt-Jackson
,
K.
,
Haapala
,
K.
,
Okudan-Kremer
,
G.
, and
Kim
,
K. Y.
,
2017
, “
Development of Learning Modules for Sustainable Life Cycle Product Design: A Constructionist Approach
,”
Proceedings of the ASEE Annual Conference & Exposition
,
Columbus, OH
,
June 2017
, p.
14
.
18.
Raoufi
,
K.
,
2020
, “
Integrated Manufacturing Process and System Analysis to Assist Sustainable Product Design
,”
Doctoral dissertation
,
Oregon State University
,
Corvallis, OR
, https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/0c483s07g
19.
Babar
,
M. A.
,
Winkler
,
D.
, and
Biffl
,
S.
,
2007
, “
Evaluating the Usefulness and Ease of Use of a Groupware Tool for the Software Architecture Evaluation Process
,”
First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007)
,
Madrid, Spain
,
Sept. 20–21
, pp.
430
439
.
20.
Sustainable Minds
.” http://www.sustainableminds.com/, Accessed December 20, 2017.
21.
GreenDelta GmbH
, “
OpenLCA
.” http://www.openlca.org/, Accessed December 31, 2015.
22.
IDEMAT
.” http://idematap.com, Accessed May 7, 2017.
23.
Dassault Systems
, “
SolidWorks Sustainability
.” http://www.solidworks.com/sustainability/, Accessed May 9, 2017.
24.
PRé Consultants
, “
SimaPro
.” https://www.pre-sustainability.com/simapro, Accessed May 9, 2017.
25.
Sphera
, “
GaBi Software—Version GaBi ts 9.5
.” http://www.gabi-software.com/america/support/gabi-version-history/gabi-ts-version-history/, Accessed March 25, 2021.
26.
Leibrecht
,
S.
, “
ecologiCAD
.” http://leibrecht.org/ecologicad/, Accessed January 19, 2023.
27.
Tao
,
J.
,
Chen
,
Z.
,
Yu
,
S.
, and
Liu
,
Z.
,
2017
, “
Integration of Life Cycle Assessment With Computer-Aided Product Development by a Feature-Based Approach
,”
J. Clean. Prod.
,
143
, pp.
1144
1164
.
28.
Jain
,
P.
,
2009
Design of an Interactive Eco-Assessment GUI Tool for Computer Aided Product Design
,”
B.Sc. thesis
,
Indian Institute of Technology
,
Kharagpur, India
.
29.
Cappelli
,
F.
,
Delogu
,
M.
, and
Pierini
,
M.
,
2006
, “
Integration of LCA and EcoDesign Guideline in a Virtual CAD Framework
,”
Proceedings of LCE
,
Leuven, Belguim
, pp.
185
188
.
30.
Brundage
,
M. P.
,
Bernstein
,
W. Z.
,
Hoffenson
,
S.
,
Chang
,
Q.
,
Nishi
,
H.
,
Kliks
,
T.
, and
Morris
,
K. C.
,
2018
, “
Analyzing Environmental Sustainability Methods for Use Earlier in the Product Lifecycle
,”
J. Clean. Prod.
,
187
, pp.
877
892
.
31.
Santolaria
,
M.
,
Oliver-Solà
,
J.
,
Gasol
,
C. M.
,
Morales-Pinzón
,
T.
, and
Rieradevall
,
J.
,
2011
, “
Eco-Design in Innovation Driven Companies: Perception, Predictions and the Main Drivers of Integration. The Spanish Example
,”
J. Clean. Prod.
,
19
(
12
), pp.
1315
1323
.
32.
Raoufi
,
K.
,
Wisthoff
,
A. K.
,
DuPont
,
B. L.
, and
Haapala
,
K. R.
,
2019
, “
A Questionnaire-Based Methodology to Assist Non-Experts in Selecting Sustainable Engineering Analysis Methods and Software Tools
,”
J. Clean. Prod.
,
229
, pp.
528
541
.
33.
Ahmad
,
S.
,
Wong
,
K. Y.
,
Tseng
,
M. L.
, and
Wong
,
W. P.
,
2018
, “
Sustainable Product Design and Development: A Review of Tools, Applications and Research Prospects
,”
Resour. Conserv. Recycl.
,
132
, pp.
49
61
.
34.
Seay
,
J. R.
,
2015
, “
Education for Sustainability: Developing a Taxonomy of the Key Principles for Sustainable Process and Product Design
,”
Comput. Chem. Eng.
,
81
, pp.
147
152
.
35.
Qiu
,
C.
,
Tan
,
J.
,
Liu
,
Z.
,
Mao
,
H.
, and
Hu
,
W.
,
2022
, “
Design Theory and Method of Complex Products: A Review
,”
Chin. J. Mech. Eng.
,
35
(
1
), p.
103
.
36.
Oman
,
S.
,
Gilchrist
,
B.
,
Rebhuhn
,
C.
,
Tumer
,
I. Y.
,
Nix
,
A.
, and
Stone
,
R.
,
2012
, “
Towards a Repository of Innovative Products to Enhance Engineering Creativity Education
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, Vol. 45066, pp.
207
218
.
37.
Oman
,
S. K.
,
Tumer
,
I. Y.
,
Wood
,
K.
, and
Seepersad
,
C.
,
2013
, “
A Comparison of Creativity and Innovation Metrics and Sample Validation Through In-Class Design Projects
,”
Res. Eng. Des.
,
24
(
1
), pp.
65
92
.
38.
Haapala
,
K. R.
,
Poppa
,
K.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2011
, “
Automating Environmental Impact Assessment During the Conceptual Phase of Product Design
,”
Proceedings of the 2011 AAAI Spring Symposium: Artificial Intelligence and Sustainable Design
,
Palo Alto, CA
,
Mar. 21–23
, pp.
53
59
.
39.
Bohm
,
M. R.
,
Haapala
,
K. R.
,
Poppa
,
K.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2010
, “
Integrating Life Cycle Assessment Into the Conceptual Phase of Design Using a Design Repository
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091005
.
40.
Ramanujan
,
D.
,
Benjamin
,
W.
,
Bernstein
,
W. Z.
,
Elmqvist
,
N.
, and
Ramani
,
K.
,
2013
, “
ShapeSift: Suggesting Sustainable Options in Design Reuse From Part Repositories
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, Vol.
55911
, p.
V004T05A041
.
41.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Benjamin
,
W.
,
Ramani
,
K.
,
Elmqvist
,
N.
,
Kulkarni
,
D.
, and
Tew
,
J.
,
2015
, “
A Framework for Visualization-Driven Eco-Conscious Design Exploration
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
4
), p.
041010
.
42.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Kulkarni
,
D.
,
Tew
,
J.
, and
Ramani
,
K.
,
2016
, “
ShapeSIFT: Evaluating InfoVis Tools for Eco-Conscious Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, Vol.
50145
, p.
V004T05A045
.
43.
Wisthoff
,
A.
,
Ferrero
,
V.
,
Huynh
,
T.
, and
DuPont
,
B.
,
2016
, “
Quantifying the Impact of Sustainable Product Design Decisions in the Early Design Phase Through Machine Learning
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
, Vol. 50145, p. V004T05A043.
44.
Gilchrist
,
B.
,
Tumer
,
I. Y.
,
Stone
,
R. B.
,
Gao
,
Q.
, and
Haapala
,
K. R.
,
2013
, “
Comparison of Environmental Impacts of Innovative and Common Products
,”
Presented at the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Sept. 2013
,
American Society of Mechanical Engineers Digital Collection
, pp.
825
834
.
45.
Gilchrist
,
B.
,
Van Bossuyt
,
D. L.
,
Tumer
,
I. Y.
,
Arlitt
,
R.
,
Stone
,
R. B.
, and
Haapala
,
K. R.
,
2013
, “
Functional Impact Comparison of Common and Innovative Products
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, Vol.
55911
, p.
V004T05A037
.
46.
Arlitt
,
R.
,
Bossuyt
,
D. L. V.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2017
, “
The Function-Based Design for Sustainability Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041102
.
47.
Raoufi
,
K.
,
Haapala
,
K. R.
,
Jackson
,
K. L.
,
Kim
,
K.-Y.
,
Kremer
,
G. E. O.
, and
Psenka
,
C. E.
,
2017
, “
Enabling Non-Expert Sustainable Manufacturing Process and Supply Chain Analysis During the Early Product Design Phase
,”
Procedia Manufacturing, in 45th SME North American Manufacturing Research Conference, NAMRC 45
,
Los Angeles, LA
,
June 4–8
, Vol. 10, pp.
1097
1108
.
48.
Raoufi
,
K.
,
Haapala
,
K. R.
,
Kremer
,
G. E. O.
,
Kim
,
K.-Y.
,
Psenka
,
C. E.
, and
Jackson
,
K. L.
,
2017
, “
Enabling Cyber-Based Learning of Product Sustainability Assessment Using Unit Manufacturing Process Analysis
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
,
ASME
,
p.
V004T05A038
.
49.
Raoufi
,
K.
,
Park
,
K.
,
Khan
,
M. T.
,
Haapala
,
K. R.
,
Psenka
,
C. E.
,
Jackson
,
K. L.
,
Kremer
,
G. E.
, and
Kim
,
K. Y.
,
2019
, “
A Cyberlearning Platform for Enhancing Undergraduate Engineering Education in Sustainable Product Design
,”
J. Clean. Prod.
,
211
, pp.
730
741
.
50.
Haapala
,
K. R.
,
Rivera
,
J. L.
, and
Sutherland
,
J. W.
,
2008
, “
Application of Life Cycle Assessment Tools to Sustainable Product Design and Manufacturing
,”
Int. J. Innov. Comput. Inf. Contr.
,
5
(
3
), pp.
575
589
.
51.
Cross
,
N.
,
2008
,
Engineering Design Methods: Strategies for Product Design
, 4th ed.,
Wiley
,
Chichester, England; Hoboken, NJ
.
52.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2011
,
Product Design and Development
, 5th ed.,
McGraw-Hill Education
,
New York
.
53.
Pahl
,
G.
, and
Beitz
,
W.
,
2013
,
Engineering Design: A Systematic Approach
,
Springer Science & Business Media
,
Berlin, Germany
.
54.
Tan
,
K. C.
,
Kannan
,
V. R.
, and
Handfield
,
R. B.
,
1998
, “
Supply Chain Management: Supplier Performance and Firm Performance
,”
J. Supply Chain Manag.
,
34
(
3
), p.
2
.
55.
Chaabane
,
A.
,
Ramudhin
,
A.
, and
Paquet
,
M.
,
2011
, “
Designing Supply Chains With Sustainability Considerations
,”
Prod. Plan. Control
,
22
(
8
), pp.
727
741
.
56.
Seuring
,
S.
, and
Müller
,
M.
,
2008
, “
From a Literature Review to a Conceptual Framework for Sustainable Supply Chain Management
,”
J. Clean. Prod.
,
16
(
15
), pp.
1699
1710
. 16/j.jclepro.2008.04.020
57.
Hassini
,
E.
,
Surti
,
C.
, and
Searcy
,
C.
,
2012
, “
A Literature Review and a Case Study of Sustainable Supply Chains With a Focus on Metrics
,”
Int. J. Prod. Econ.
,
140
(
1
), pp.
69
82
.
58.
Olson
,
E. C.
,
2010
, “
Integration Between Product Design And Supply Chain With Consideration For Sustainability
,” Master Thesis, The Pennsylvania State University. https://etda.libraries.psu.edu/catalog/11313.
59.
Sarkis
,
J.
, and
Dhavale
,
D. G.
,
2015
, “
Supplier Selection for Sustainable Operations: A Triple-Bottom-Line Approach Using a Bayesian Framework
,”
Int. J. Prod. Econ.
,
166
(
Suppl. C
), pp.
177
191
.
60.
Paul
,
B. K.
, and
McNeff
,
P.
,
2018
, “
A Pedagogical Framework for Manufacturing Process Design
,”
Proc. Manuf.
,
26
, pp.
1388
1397
.
61.
Raoufi
,
K.
and
Haapala
,
K. R.
,
2020
, “
Manufacturing Process and System (MaPS) Sustainability Analysis Tool
,”
Figshare
.
62.
Alsaffar
,
A. J.
,
Raoufi
,
K.
,
Kim
,
K.-Y.
,
Kremer
,
G. E. O.
, and
Haapala
,
K. R.
,
2016
, “
Simultaneous Consideration of Unit Manufacturing Processes and Supply Chain Activities for Reduction of Product Environmental and Social Impacts
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101009
.
63.
Goedkoop
,
M. J.
,
Indrane
,
D.
, and
de Beer
,
I. M.
,
2018
, “
Product Social Impact Assessment Handbook—2018
,” The Roundtable for Product Social Metrics, Amersfoort, The Netherlands, Version 4.0. https://pre-sustainability.com/articles/2018-handbook-for-product-social-metrics-available-now/, Accessed December 10, 2018.
64.
Hutchins
,
M. J.
, and
Sutherland
,
J. W.
,
2008
, “
An Exploration of Measures of Social Sustainability and Their Application to Supply Chain Decisions
,”
J. Clean. Prod.
,
16
(
15
), pp.
1688
1698
.
65.
Eastwood
,
M. D.
, and
Haapala
,
K. R.
,
2015
, “
A Unit Process Model Based Methodology to Assist Product Sustainability Assessment During Design for Manufacturing
,”
J. Clean. Prod.
,
108
, pp.
54
64
.
66.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.
67.
Madan
,
J.
,
Mani
,
M.
,
Lee
,
J. H.
, and
Lyons
,
K. W.
,
2015
, “
Energy Performance Evaluation and Improvement of Unit-Manufacturing Processes: Injection Molding Case Study
,”
J. Clean. Prod.
,
105
, pp.
157
170
.
68.
German
,
R. M.
,
2012
, “Metal Powder Injection Molding (MIM): Key Trends and Markets,”
Handbook of Metal Injection Molding
,
D. F.
Heaney
, ed., Woodhead Publishing Series in Metals and Surface Engineering,
Woodhead Publishing
, pp.
1
25
.
69.
Todd
,
R. H.
,
Allen
,
D. K.
, and
Alting
,
L.
,
1994
,
Manufacturing Processes Reference Guide
, 1st ed.,
Industrial Press
,
New York
.
70.
Raoufi
,
K.
,
Harper
,
D. S.
, and
Haapala
,
K. R.
,
2020
, “
Reusable Unit Process Life Cycle Inventory for Manufacturing: Metal Injection Molding
,”
Prod. Eng. Res. Dev.
,
14
(
5–6
), pp.
707
716
.
71.
Raoufi
,
K.
,
Manoharan
,
S.
,
Etheridge
,
T.
,
Paul
,
B. K.
, and
Haapala
,
K. R.
,
2020
, “
Cost and Environmental Impact Assessment of Stainless Steel Microreactor Plates Using Binder Jetting and Metal Injection Molding Processes
,”
Procedia Manufacturing, in 48th SME North American Manufacturing Research Conference, NAMRC 48
, Vol.
48
, pp.
311
319
.
72.
ASTM
,
2022
, “
Standard Guide for Characterizing Environmental Aspects of Manufacturing Processes (ASTM E3012-22)
,”
ASTM International
,
Conshohocken, PA
.
73.
Groover
,
M. P.
,
2015
,
Fundamentals of Modern Manufacturing
,
Wiley
,
New York
, http://public.eblib.com/choice/PublicFullRecord.aspx?p=5106307. Accessed December 1, 2017.
74.
Overcash
,
M.
,
Twomey
,
J.
, and
Kalla
,
D.
,
2009
, “
Unit Process Life Cycle Inventory for Product Manufacturing Operations
,”
ASME International Manufacturing Science and Engineering Conference
,
West Lafayette, IN
,
ASME
, pp.
49
55
.
75.
Kellens
,
K.
,
Dewulf
,
W.
,
Overcash
,
M.
,
Hauschild
,
M. Z.
, and
Duflou
,
J. R.
,
2012
, “
Methodology for Systematic Analysis and Improvement of Manufacturing Unit Process Life Cycle Inventory (UPLCI) CO2PE! Initiative (Cooperative Effort on Process Emissions in Manufacturing). Part 2: Case Studies
,”
Int. J. Life Cycle Assess.
,
17
(
2
), pp.
242
251
.
76.
Raoufi
,
K.
,
Taylor
,
C.
,
Laurin
,
L.
, and
Haapala
,
K. R.
,
2019
, “
Visual Communication Methods and Tools for Sustainability Performance Assessment: Linking Academic and Industry Perspectives
,”
Procedia CIRP, in 26th CIRP Conference on Life Cycle Engineering (LCE)
,
West Lafayette, IN
,
May 7–9
, Vol. 80, pp.
215
220
.
77.
Raoufi
,
K.
,
Haapala
,
K. R.
,
Etheridge
,
T.
,
Manoharan
,
S.
, and
Paul
,
B. K.
,
2022
, “
Cost and Environmental Impact Assessment of Stainless Steel Microscale Chemical Reactor Components Using Conventional and Additive Manufacturing Processes
,”
J. Manuf. Syst.
,
62
, pp.
202
217
.
78.
U.S. Bureau of Labor Statistics
, “
Incidents Rates for Non-Fatal Occupational Injuries and Illnesses
.” https://www.bls.gov/news.release/osh2.t01.htm. Accessed December 10, 2015.
79.
Khazzoom
,
J. D.
,
1980
, “
Economic Implications of Mandated Efficiency in Standards for Household Appliances
,”
Energy J.
,
1
(
4
).
80.
Binswanger
,
M.
,
2001
, “
Technological Progress and Sustainable Development: What About the Rebound Effect?
,”
Ecol. Econ.
,
36
(
1
), pp.
119
132
.
81.
Brookes
,
L.
,
1990
, “
The Greenhouse Effect: The Fallacies in the Energy Efficiency Solution
,”
Energy Pol.
,
18
(
2
), pp.
199
201
.
82.
Saunders
,
H. D.
,
1992
, “
The Khazzoom-Brookes Postulate and Neoclassical Growth
,”
Energy J.
,
13
(
4
).
83.
Font Vivanco
,
D.
,
Kemp
,
R.
, and
van der Voet
,
E.
,
2015
, “
The Relativity of Eco-Innovation: Environmental Rebound Effects From Past Transport Innovations in Europe
,”
J. Clean. Prod.
,
101
, pp.
71
85
.
84.
Mulrow
,
J.
,
Gali
,
M.
, and
Grubert
,
E.
,
2021
, “
The Cyber-Consciousness of Environmental Assessment: How Environmental Assessments Evaluate the Impacts of Smart, Connected, and Digital Technology
,”
Environ. Res. Lett.
,
17
(
1
), p.
013001
.
85.
Norman
,
W.
, and
MacDonald
,
C.
,
2004
, “
Getting to the Bottom of ‘Triple Bottom Line’
,”
Bus. Ethics Q.
,
14
(
2
), pp.
243
262
.
86.
Polimeni
,
J. M.
,
Mayumi
,
K.
,
Giampietro
,
M.
, and
Alcott
,
B.
,
2015
,
The Myth of Resource Efficiency: The Jevons Paradox
,
Routledge
,
London
.
87.
Shove
,
E.
,
2018
, “
What is Wrong With Energy Efficiency?
,”
Build. Res. Inf.
,
46
(
7
), pp.
779
789
.
88.
Sorrell
,
S.
,
2014
, “
Energy Substitution, Technical Change and Rebound Effects
,”
Energies
,
7
(
5
), pp.
2850
2873
.
You do not currently have access to this content.