Abstract

As rates of textile manufacturing and disposal escalate, the ramifications to health and the environment through water pollution, microplastic contaminant concentrations, and greenhouse gas emissions increase. Discarding over 15.4 million tons of textiles each year, the U.S. recycles less than 15%, sending the remainder to landfills and incinerators. Textile reuse is not sufficient to de-escalate the situation; recycling is necessary. Most textile recycling technologies from past decades are expensive, create low-quality outputs, or are not industry scalable. For viability, textile recycling system designs must evolve with the rapid pace of a dynamic textile and fashion industry. For any design to be sustainable, it must also be flexible to adapt to technological, user, societal, and environmental condition advances. To this end, flexible and sustainable design principles were compared: overlapping principles were combined and missing principles were added to create 12 overarching principles encompassing design for sustainability and flexibility (DfSFlex). The Fiber Shredder was designed and built with flexibility and sustainability as its goal and evaluated on how well it met DfSFlex principles. An evaluation of the Fiber Shredder’s performance found that increased speed and processing time increase the generation of the desired output—fibers and yarns—manifesting the principles of Design for Separation in design and Facilitate Resource Recovery in processing. The development of this technology, with the application of sustainable and flexible design, fiber-to-fiber recycling using mechanical systems appears promising for maintaining value while repurposing textiles.

References

1.
United Nations General Assembly Economic and Social Council,
2023
, “
SDG Progress Report
,” United Nations, New York, New York, A/78/50, https://sdgs.un.org/sites/default/files/2023-04/SDG_Progress_Report_Special_Edition_2023_ADVANCE_UNEDITED_VERSION.pdf, Accessed June 22, 2023.
2.
U.S
.
Environmental Protection Agency (EPA)
,
2023
, “
What Are the Trends in Wastes and Their Effects on Human Health and the Environment?
,” U.S. Environmental Protection Agency (EPA), https://www.epa.gov/report-environment/wastes, Accessed June 30, 2023.
3.
U.S
.
Environmental Protection Agency (EPA)
,
2023
, “
Advancing Sustainable Materials Management: Facts and Figures Report
,” https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/advancing-sustainable-materials-management, Accessed June 22, 2023.
4.
Juanga-Labayen
,
J. P.
,
Labayen
,
I. V.
, and
Yuan
,
Q.
,
2022
, “
A Review on Textile Recycling Practices and Challenges
,”
Textiles
,
2
(
1
), pp.
174
188
.
5.
Wang
,
Y.
,
2010
, “
Fiber and Textile Waste Utilization
,”
Waste Biomass Valorization
,
1
(
1
), pp.
135
143
.
6.
Navone
,
L.
,
Moffitt
,
K.
,
Hansen
,
K.-A.
,
Blinco
,
J.
,
Payne
,
A.
, and
Speight
,
R.
,
2020
, “
Closing the Textile Loop: Enzymatic Fibre Separation and Recycling of Wool/Polyester Fabric Blends
,”
Waste Manage.
,
102
, pp.
149
160
.
7.
Damayanti
,
D.
,
Wulandari
,
L. A.
,
Bagaskoro
,
A.
,
Rianjanu
,
A.
, and
Wu
,
H.-S.
,
2021
, “
Possibility Routes for Textile Recycling Technology
,”
Polymers
,
13
(
21
), p.
3834
.
8.
Shirvanimoghaddam
,
K.
,
Motamed
,
B.
,
Ramakrishna
,
S.
, and
Naebe
,
M.
,
2020
, “
Death by Waste: Fashion and Textile Circular Economy Case
,”
Sci. Total Environ.
,
718
, p.
137317
.
9.
Ribul
,
M.
,
Lanot
,
A.
,
Tommencioni Pisapia
,
C.
,
Purnell
,
P.
,
McQueen-Mason
,
S. J.
, and
Baurley
,
S.
,
2021
, “
Mechanical, Chemical, Biological: Moving Towards Closed-Loop bio-Based Recycling in a Circular Economy of Sustainable Textiles
,”
J. Cleaner Prod.
,
326
, p.
129325
.
10.
Oettli
,
D.
,
2023
, “
WWF Apparel and Textiles Industry Report
,” World Wildlife Federation (WWF), Switzerland, https://www.wwf.ch/fr/nos-objectifs/rapport-du-wwf-sur-lindustrie-de-lhabillement-et-des-textiles, Accessed June 30, 2023.
11.
ClimateSeed
,
2022
, “
Textile Industry: Environmental Impact and Regulations
,” https://climateseed.com/blog/secteur-du-textile-impact-environnemental-et-r%C3%A9glementation, Accessed June 30, 2023.
12.
European Parliament
,
2020
, “
The Impact of Textile Production and Waste on the Environment (Infographic)
,” News | European Parliament, https://www.europarl.europa.eu/news/en/headlines/society/20201208STO93327/the-impact-of-textile-production-and-waste-on-the-environment-infographic, Accessed October, 2022.
13.
Watson
,
D.
,
Kiørboe
,
N.
,
Palm
,
D.
,
Tekie
,
H.
,
Ekvall
,
T.
,
Lindhqvist
,
T.
,
Tojo
,
N.
, et al
,
2015
, “
EPR-Systems and new Business Models
,” Nordisk Ministerråd, Copenhagen, http://norden.diva-portal.org/smash/get/diva2:791018/FULLTEXT02.pdf, Accessed June 22, 2023.
14.
Sandvik
,
I. M.
, and
Stubbs
,
W.
,
2019
, “
Circular Fashion Supply Chain Through Textile-to-Textile Recycling
,”
J. Fash. Mark. Manag. Int. J.
,
23
(
3
), pp.
366
381
.
15.
Baruque-Ramos
,
J.
,
Amaral
,
M. C.
,
Laktim
,
M. C.
,
Santos
,
H. N.
,
Araujo
,
F. B.
, and
Zonatti
,
W. F.
,
2017
, “
Social and Economic Importance of Textile Reuse and Recycling in Brazil
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
254
(
19
), p.
192003
.
16.
Leal Filho
,
W.
,
Ellams
,
D.
,
Han
,
S.
,
Tyler
,
D.
,
Boiten
,
V. J.
,
Paço
,
A.
,
Moora
,
H.
, and
Balogun
,
A.-L.
,
2019
, “
A Review of the Socio-Economic Advantages of Textile Recycling
,”
J. Cleaner Prod.
,
218
, pp.
10
20
.
17.
Chiu
,
M.-C.
, and
Chu
,
C.-H.
,
2012
, “
Review of Sustainable Product Design From Life Cycle Perspectives
,”
Int. J. Precis. Eng. Manuf.
,
13
(
7
), pp.
1259
1272
.
18.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W. A.
,
2010
,
Product Design for Manufacture and Assembly
,
CRC Press
,
Boca Raton, FL
.
19.
Forst
,
L.
,
2022
, “
Textile Thinking in Practice: Creative Textile Design Methods as Research in a Circular Economy
,”
Design Research Society 2022
,
Bilbao, Spain
,
June 25–July 3
.
20.
Kasarda
,
M. E.
,
Terpenny
,
J. P.
,
Inman
,
D.
,
Precoda
,
K. R.
,
Jelesko
,
J.
,
Sahin
,
A.
, and
Park
,
J.
,
2007
, “
Design for Adaptability (DFAD)—A New Concept for Achieving Sustainable Design
,”
Rob. Comput. Integr. Manuf.
,
23
(
6
), pp.
727
734
.
22.
Realff
,
M. J.
,
Raymond
,
M.
, and
Ammons
,
J. C.
,
2004
, “
E-Waste: An Opportunity
,”
Mater. Today
,
7
(
1
), pp.
40
45
.
23.
Roithner
,
C.
, and
Rechberger
,
H.
,
2020
, “
Implementing the Dimension of Quality Into the Conventional Quantitative Definition of Recycling Rates
,”
Waste Manag.
,
105
, pp.
586
593
.
24.
McCauley
,
E.
, and
Jestratijevic
,
I.
,
2023
, “
Exploring the Business Case for Textile-to-Textile Recycling Using Post-Consumer Waste in the US: Challenges and Opportunities
,”
Sustainability
,
15
(
2
), p.
Art. No. 2
.
25.
Anastas
,
P. T.
, and
Zimmerman
,
J. B.
,
2003
, “
Design Through the 12 Principles of Green Engineering
,”
Environ. Sci. Technol.
,
37
(
5
), pp.
94A
101A
.
26.
Palani Rajan
,
P. K.
,
Van Wie
,
M.
,
Campbell
,
M. I.
,
Wood
,
K. L.
, and
Otto
,
K. N.
,
2005
, “
An Empirical Foundation for Product Flexibility
,”
Des. Stud.
,
26
(
4
), pp.
405
438
.
27.
Spiller
,
M.
,
Vreeburg
,
J. H. G.
,
Leusbrock
,
I.
, and
Zeeman
,
G.
,
2015
, “
Flexible Design in Water and Wastewater Engineering—Definitions, Literature and Decision Guide
,”
J. Environ. Manage.
,
149
, pp.
271
281
.
28.
Siu
,
K. W. M.
, and
Wong
,
K. S. L.
,
2015
, “
Flexible Design Principles: Street Furniture Design for Transforming Environments, Diverse Users, Changing Needs and Dynamic Interactions
,”
Facilities
,
33
(
9/10
), pp.
588
621
.
29.
Saleh
,
J. H.
,
Hastings
,
D. E.
, and
Newman
,
D. J.
,
2003
, “
Flexibility in System Design and Implications for Aerospace Systems
,”
Acta Astronaut.
,
53
(
12
), pp.
927
944
.
30.
Ceschin
,
F.
, and
Gaziulusoy
,
I.
,
2016
, “
Evolution of Design for Sustainability: From Product Design to Design for System Innovations and Transitions
,”
Des. Stud.
,
47
, pp.
118
163
.
31.
Kirchherr
,
J.
,
Reike
,
D.
, and
Hekkert
,
M.
,
2017
, “
Conceptualizing the Circular Economy: An Analysis of 114 Definitions
,”
Resour. Conserv. Recycl.
,
127
, pp.
221
232
.
32.
Stromberg
,
P.
,
2004
, “
Market Imperfections in Recycling Markets: Conceptual Issues and Empirical Study of Price Volatility in Plastics
,”
Resour. Conserv. Recycl.
,
41
(
4
), pp.
339
364
.
33.
Piribauer
,
B.
, and
Bartl
,
A.
,
2019
, “
Textile Recycling Processes, State of the Art and Current Developments: A Mini Review
,”
Waste Manage. Res.
,
37
(
2
), pp.
112
119
.
34.
Sandin
,
G.
, and
Peters
,
G. M.
,
2018
, “
Environmental Impact of Textile Reuse and Recycling—A Review
,”
J. Cleaner Prod.
,
184
, pp.
353
365
.
35.
Yu
,
I. K. M.
,
Chen
,
H.
,
Abeln
,
F.
,
Auta
,
H.
,
Fan
,
J.
,
Budarin
,
V. L.
,
Clark
,
J. H.
, et al
,
2021
, “
Chemicals From Lignocellulosic Biomass: A Critical Comparison Between Biochemical, Microwave and Thermochemical Conversion Methods
,”
Crit. Rev. Environ. Sci. Technol.
,
51
(
14
), pp.
1479
1532
.
36.
Hole
,
G.
, and
Hole
,
A. S.
,
2020
, “
Improving Recycling of Textiles Based on Lessons From Policies for Other Recyclable Materials: A Minireview
,”
Sustain. Prod. Consum.
,
23
, pp.
42
51
.
37.
Thompson
,
N.
,
2017
,
Textile Waste & The 3R’s: Textile Waste Strategy Recommendations for the City of Toronto
,
York University
,
Toronto, Canada
.
38.
Karell
,
E.
, and
Niinimäki
,
K.
,
2019
, “
Addressing the Dialogue Between Design, Sorting and Recycling in a Circular Economy
,”
Des. J.
,
22
(
sup1
), pp.
997
1013
.
39.
Roos
,
S.
,
Sandin
,
G.
,
Peters
,
G.
,
Spak
,
B.
,
Schwarz Bour
,
L.
,
Perzon
,
E.
, and
Jönsson
,
C.
,
2019
, “
White Paper on Textile Recycling
,” Mistra Future Fashion, Stockholm, Sweden, http://rgdoi.net/10.13140/RG.2.2.31018.77766, Accessed June 23, 2023
40.
Dissanayake
,
D. G. K.
, and
Weerasinghe
,
D. U.
,
2021
, “
Fabric Waste Recycling: A Systematic Review of Methods, Applications, and Challenges
,”
Mater. Circ. Econ.
,
3
(
1
), p.
24
.
41.
Pensupa
,
N.
,
2020
, “Recycling of End-of-Life Clothes,”
Sustainable Technologies for Fashion and Textiles
,
R
.
Nayak
, ed.,
Elsevier
,
New York
, pp.
251
309
.
42.
Athanasopoulos
,
P.
, and
Zabaniotou
,
A.
,
2022
, “
Post-Consumer Textile Thermochemical Recycling to Fuels and Biocarbon: A Critical Review
,”
Sci. Total Environ.
,
834
, p.
155387
.
43.
Andradóttir
,
S.
,
Ayhan
,
H.
, and
Down
,
D. G.
,
2013
, “
Design Principles for Flexible Systems
,”
Prod. Oper. Manag.
,
22
(
5
), pp.
1144
1156
.
44.
Alves
,
P. H. T. F.
,
Clarke-Sather
,
A. R.
,
Carlson
,
S.
, and
Martini
,
A.
,
2023
, “
Theoretical Method for Characterizing Textile Failure Mechanics in Mechanical Recycling with Carded Drums
,”
ASME 2023 18th International Manufacturing Science and Engineering Conference
,
New Brunswick, NJ
,
June 12–16
,
Rutgers University
.
45.
ASTM Standard D5034-21
,
2021
, “
Standard Test Method for Breaking Strength and Elongation of Textile Fabrics (GrabTest)
,” ASTM International, West Conshohocken, PA, www.astm.orgwww.astm.org.
46.
ASTM Standard D1776/D1776M-16
,
2020
, “
Standard Practice for Conditioning and Testing Textiles
,” ASTM International, West Conshohocken, PA, www.astm.org.
47.
Ross
,
A.
,
2018
,
Basic and Advanced Statistical Tests Writing Results Sections and Creating Tables and Figures
, 3rd ed.,
Sense Publishers
,
Rotterdam
.
48.
Tran
,
N. P.
,
Gunasekara
,
C.
,
Law
,
D. W.
,
Houshyar
,
S.
,
Setunge
,
S.
, and
Cwirzen
,
A.
,
2022
, “
Comprehensive Review on Sustainable Fiber Reinforced Concrete Incorporating Recycled Textile Waste
,”
J. Sustainable Cem.-Based Mater.
,
11
(
1
), pp.
28
42
.
49.
Environmental &
Occupational Health Assessment Program
,
2014
, “
Insulation And Your Home: Health Considerations
,” https://portal.ct.gov/-/media/Departments-and-Agencies/DPH/dph/environmental_health/eoha/pdf/InsulationFS12014Revpdf.pdf, Accessed June 30, 2023.
50.
Stall-Meadows
,
C.
, and
Peek
,
G.
,
2009
, “
Recycled Household Textiles and Clothing
,” https://shareok.org/bitstream/handle/11244/334863/oksa_T-4318_2009-03.pdf?sequence=1, Accessed June 26, 2023.
51.
Kimm
,
M.
,
Gerstein
,
N.
,
Schmitz
,
P.
,
Simons
,
M.
, and
Gries
,
T.
,
2018
, “
On the Separation and Recycling Behaviour of Textile Reinforced Concrete: an Experimental Study
,”
Mater. Struct.
,
51
(
5
), p.
122
.
52.
Miller
,
F.
,
2022
, “
Shredders
,” Livingston, New Jersey, https://franklinmiller.com/shredders/, Accessed October 3, 2023.
53.
D’Angelo
,
S.
,
2017
, “
Team Develops Machine with aim of Ending Textile Waste
,” Cornell Chronicle, Ithaca, New York, https://news.cornell.edu/stories/2017/04/team-develops-machine-aim-ending-textile-waste, Accessed October 3, 2023.
You do not currently have access to this content.