Graphical Abstract Figure

The Graphical Abstract presents the GMAW experimental setup secured within the inner capsule, along with the various post-processing analyses conducted following the 2.5 second drop test

Graphical Abstract Figure

The Graphical Abstract presents the GMAW experimental setup secured within the inner capsule, along with the various post-processing analyses conducted following the 2.5 second drop test

Close modal

Abstract

Directed energy deposition-arc (DED-arc) is a viable method of metal 3D printing for manufacturing in-space under microgravity conditions. This study investigates the effect of reduced gravity on the droplet transfer in a gas metal arc welding (GMAW)-based DED-arc process. Single bead deposited using GMAW welding process under microgravity and standard terrestrial gravity (1 g) are compared. Microgravity was simulated in a drop tower where the experimental capsule was subjected to 2.5 s of free-fall. The experimental setup for GMAW welding process, including high-speed cameras and sensors, was present within the experimental capsule. Droplet frequency and diameter were measured and compared between microgravity and 1 g using the images obtained. Further, the impact of reduced gravity on weld bead geometry and the distribution of gas porosity was investigated. Microhardness analysis was also conducted on both 1 g and reduced gravity samples to assess variations in material hardness. A statistically significant difference in droplet diameter and frequency was found. This difference is attributed to the reduction in gravitational force. Upon analyzing the weld bead geometry, noticeable variations are detected in the contact angles and the reinforcement of beads formed under different gravity conditions. These differences are attributed to alterations in convection within the molten weld pool. The blowhole analysis revealed a noticeable trend, wherein reduced gravity facilitated the coalescence of gas porosity, resulting in larger diameters due to alterations in weld pool convection. There were no statistically significant changes observed in both microhardness and surface finish.

References

1.
Crawford Ian
,
A.
,
2016
, “
The Long-Term Scientific Benefits of a Space Economy
,”
Space Policy
,
37
(
2
), pp.
58
61
.
2.
Arney
,
D.
,
Sutherland
,
R.
,
Mulvaney
,
J.
,
Steinkoenig
,
D.
,
Stockdale
,
C.
, and
Farley
,
M.
,
2021
, “
On-Orbit Servicing, Assembly, and Manufacturing (OSAM) State of Play
,”
NASA Document ID 20210022660
.
3.
Baby
,
J.
, and
Murugaiyan
,
A.
,
2020
, “
Microstructural Development During Wire Arc Additive Manufacturing of Copper-Based Components
,”
Weld. World
,
64
(
2
), pp.
395
405
.
4.
Norrish
,
J.
,
2006
,
Advanced Welding Processes
,
Woodhead Publishing
,
Cambridge, UK
.
5.
Ferraresi
,
V. A.
,
Figueiredo
,
K. M.
, and
Hiap Ong
,
T.
,
2003
, “
Metal Transfer in the Aluminum Gas Metal Arc Welding
,”
J. Braz. Soc. Mech. Sci.
,
25
(
3
), pp.
229
234
.
6.
Wu
,
C.
,
Zou
,
D.
, and
Gao
,
J.
,
2008
, “
Determining the Critical Transition Current for Metal Transfer in gas Metal Arc Welding (GMAW)
,”
Front. Mater. Sci. China
,
2
(
4
), pp.
397
401
.
7.
Thomas
,
V. A.
,
Prasad
,
N. S.
, and
Ananda Mohan Reddy
,
C.
,
2000
, “
Microgravity Research Platforms—A Study
,”
Curr. Sci.
,
79
(
3
), pp.
336
340
. https://www.jstor.org/stable/24103367
8.
Nogi
,
K.
,
Aoki
,
Y.
,
Fujii
,
H.
,
Nakata
,
K.
, and
Kaihara
,
S.
,
1998
, “
Weld Formation in Microgravity
,”
ISIJ Int.
,
38
(
2
), pp.
163
170
.
9.
Nogi
,
K.
,
Aoki
,
Y.
,
Fujii
,
H.
,
Nakata
,
K.
, and
Kaihara
,
S.
,
1998
, “
Behavior of Bubbles in Weld Under Microgravity
,”
Acta Mater.
,
46
(
12
), pp.
4405
4413
.
10.
Fujii
,
H.
,
Sogabe
,
N.
, and
Nogi
,
K.
,
2006
, “
Convection in Weld Pool Under Microgravity and Terrestrial Conditions
,”
Mater. Sci. Forum
,
512
, pp.
301
304
.
11.
Hidetoshi
,
F.
,
Yosuke
,
S.
,
Manabu
,
T.
, and
Nogi
,
K.
,
2009
, “
Effect of Gravity on Arc Shape in GTA Welding for Low Electric Arc Current
,”
J. Mater. Sci. Technol.
,
19
(
Supplement
), pp.
209
211
. https://www.jmst.org/EN/abstract/abstract6817.shtml
12.
Wang
,
G.
,
1993
, “
Laser Beam Welding of AISI 316 Stainless Steel in Microgravity Environment: Experiments Aboard a KC-135 Flight
,”
MSc Dissertation
,
University of Manitoba
,
Manitoba, Canada
.
13.
Park
,
J.-H.
,
Kim
,
S.-H.
,
Moon
,
H.-S.
, and
Kim
,
M.-H.
,
2019
, “
Influence of Gravity on Molten Pool Behavior and Analysis of Microstructure on Various Welding Positions in Pulsed Gas Metal Arc Welding
,”
Appl. Sci.
,
9
(
21
), pp.
4626
4640
.
14.
Kang
,
N.
,
Mahank
,
T. A.
,
Kulkarni
,
A. K.
, and
Singh
,
J.
,
2003
, “
Effects of Gravitational Orientation on Surface Deformation and Weld Pool Geometry During Gas Tungsten Arc Welding
,”
Mater. Manuf. Process.
,
18
(
2
), pp.
169
180
.
15.
Li
,
Y.
,
Chen
,
S.
, and
Jianjun
,
Z.
,
2022
, “
Comprehensive Review of Wire Arc Additive Manufacturing: Hardware System, Physical Process, Monitoring, Property Characterization, Application and Future Prospects
,”
Res. Eng.
,
13
, pp.
1
17
.
16.
Pattanayak
,
S.
, and
Sahoo
,
S. K.
,
2021
, “
Gas Metal Arc Welding Based Additive Manufacturing—A Review
,”
CIRP J. Manuf. Sci. Technol.
,
33
, pp.
398
442
.
17.
Nikhil
,
V. V.
,
Nair
,
A.
,
Niketh
,
P.
,
Kumar
,
A.
, and
Muruganandam
,
T. M.
,
2018
, “
The 2.5 s Microgravity Drop Tower at National Centre for Combustion Research and Development (NCCRD) in Indian Institute of Technology Madras
,”
Microgravity Sci. Technol.
,
30
(
5
), pp.
663
673
.
18.
Adhithya Plato Sidharth
,
A.
,
Niketh
,
P.
,
Venkateshwaran
,
M.
,
Murugaiyan
,
A.
, and
Sathyan
,
S.
,
2024
, “
An Apparatus to Study Arc-Wire Direct Energy Metal Deposition Additive Manufacturing Process in a Drop Tower Microgravity Platform
,”
Revi. Sci. Instrum.
,
95
(
1
), pp.
015107-1
015107-12
.
19.
Pépe
,
N.
,
Egerland
,
S.
,
Colegrove
,
P. A.
,
Yapp
,
D.
,
Leonhartsberger
,
A.
, and
Scotti
,
A.
,
2011
, “
Measuring the Process Efficiency of Controlled Gas Metal Arc Welding Processes
,”
Sci. Technol. Weld. Join.
,
16
(
5
), pp.
412
417
.
20.
Zhu
,
P.
, and
Simpson
,
S.
,
2005
, “
Voltage Change in the GMAW Process Due to the Influence of a Droplet Travelling in the Arc
,”
Sci. Technol. Weld. Join.
,
10
(
2
), pp.
244
251
.
21.
Smartt
,
H. B.
, and
Einerson
,
C. J.
,
1993
, “
A Model for Heat and Mass Input Control in GMAW
,”
Weld. J.
,
72
(
5
), pp.
217
230
. https://www.osti.gov/biblio/6615751
22.
Rajeev
,
G. P.
,
Kamaraj
,
M.
, and
Bakshi
,
R.
,
2019
, “
Effect of Correction Parameters on Deposition Characteristics in Cold Metal Transfer Welding
,”
Mater. Manuf. Process.
,
34
(
11
), pp.
1205
1216
.
23.
Wang
,
Y.
, and
Tsai
,
H. L.
,
2001
, “
Effects of Surface Active Elements on Weld Pool Fluid Flow and Weld Penetration in Gas Metal Arc Welding
,”
Metall. Mater. Trans. B
,
32
(
3
), pp.
501
515
.
24.
Kou
,
S.
, and
Sun
,
D. K.
,
1985
, “
Fluid Flow and Weld Penetration in Stationary Arc Welds
,”
Metall. Mater. Trans. A
,
16
(
1
), pp.
203
213
.
25.
Mills
,
K. C.
, and
Keene
,
B. J.
,
1990
, “
Factors Affecting Variable Weld Penetration
,”
Int. Mater. Rev.
,
35
(
1
), pp.
185
216
.
26.
Domey
,
J.
,
Aidun
,
D. K.
, and
Ahmadi
,
G.
,
1994
, “Numerical Simulation of the Effect of Gravity on Weld Pool Shape,”
Materials Processing in High Gravity
,
L. L.
Regel
, and
W. R.
Wilcox
, eds.,
Springer
,
Boston, MA
, pp.
193
202
.
27.
Cho
,
W.-I.
, and
Na
,
S.-J.
,
2021
, “
Impact of Driving Forces on Molten Pool in Gas Metal Arc Welding
,”
Weld. World
,
65
(
9
), pp.
1735
1747
.
28.
Welcher
,
B.
, and
Poly
,
C.
, “
Gas Tungsten Arc Welding in Microgravity Environment
,”
NASA Technical Document N87-20306
.
29.
Hu
,
Z.
,
Zhu
,
H.
,
Zhang
,
C.
,
Zhang
,
H.
,
Qi
,
T.
, and
Zeng
,
X.
,
2018
, “
Contact Angle Evolution During Selective Laser Melting
,”
Mater. Des.
,
139
, pp.
304
313
.
30.
Egry
,
I.
,
Ricci
,
E.
,
Novakovic
,
R.
, and
Ozawa
,
S.
,
2010
, “
Surface Tension of Liquid Metals and Alloys—Recent Developments
,”
Adv. Colloid Interface Sci.
,
159
(
2
), pp.
198
212
.
31.
Digilov Rafael
,
M.
,
2003
, “
Prediction of Surface Properties of Metals From the Law of Corresponding States
,”
J. Cryst. Growth
,
249
(
1
), pp.
363
371
.
32.
Kou
,
S.
,
2020
,
Welding Metallurgy
,
John Wiley & Sons
,
NJ
.
33.
Chen
,
S.
,
Chi
,
Y.
,
Zhang
,
P.
, and
Shi
,
Y.
,
2020
, “
Mechanism to Reduce the Porosity During Argon Arc Welding of Aluminum Alloys by Changing the Arc Angle
,”
Metals
,
10
(
9
), p.
1121
.
34.
Fujii
,
H.
,
Umakoshi
,
H.
,
Aoki
,
Y.
, and
Nogi
,
K.
,
2004
, “
Bubble Formation in Aluminium Alloy During Electron Beam Welding
,”
J. Mater. Process. Technol.
,
155–156
, pp.
1252
1255
.
35.
Kou
,
S.
, and
Wang
,
Y. H.
,
1986
, “
Weld Pool Convection and Its Effect
,”
Weld. J.
,
65
(
3
), pp.
63
70
. https://s3.us-east-1.amazonaws.com/WJ-www.aws.org/supplement/WJ_1986_03_s63.pdf
36.
Rudy
,
J. F.
, and
Rupert
,
E. J.
,
1970
, “
Effects of Porosity on Mechanical Properties of Aluminum Welds
,”
Weld. J.
,
49
(
7
), pp.
322
333
. https://s3.us-east-1.amazonaws.com/WJ-www.aws.org/supplement/WJ_1970_07_s322.pdf
37.
Jenney Cynthia
,
L.
, and
O'Brien
,
A.
,
2001
,
Welding Handbook
,
Welding Science and Technology
,
Florida, USA
.
38.
Xiong
,
J.
,
Li
,
Y.-J.
,
Yin
,
Z.-Q.
, and
Chen
,
H.
,
2018
, “
Determination of Surface Roughness in Wire and Arc Additive Manufacturing Based on Laser Vision Sensing
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp.
74
85
.
39.
Yaseer
,
A.
, and
Chen
,
H.
,
2021
, “
Machine Learning Based Layer Roughness Modeling in Robotic Additive Manufacturing
,”
J. Manuf. Process.
,
70
, pp.
543
552
.
40.
Hu
,
J.
,
Guo
,
H.
, and
Tsai
,
H. L.
,
2008
, “
Weld Pool Dynamics and the Formation of Ripples in 3D Gas Metal Arc Welding
,”
Int. J. Heat Mass Transf.
,
51
(
9
), pp.
2537
2552
.
41.
Nogi
,
K.
,
Yamamoto
,
T.
,
Aoki
,
Y.
,
Kamai
,
M.
, and
Fujii
,
H.
,
2000
, “
Electron Beam Welding in Microgravity Environment
,”
ISIJ Int.
,
40
(
Suppl
), pp.
S10
S14
.
42.
Tamir
,
D.
,
1992
, “
A Path to In-Space Welding and to Other In-Space Metal Processing Technologies Using Space Shuttle Small Payloads
,”
The 1992 Shuttle Small Payloads Symposium
,
Lanham, MD
,
Oct. 20–23
.
43.
Aidun Daryush
,
K.
,
2001
, “
Influence of Simulated High-G on the Weld Size of aL–lI Alloy
,”
Acta Astronaut.
,
48
(
2
), pp.
153
156
.
44.
Marques
,
O.
,
2011
,
Practical Image and Video Processing Using MATLAB
,
John Wiley & Sons
,
Hoboken, NJ
.
You do not currently have access to this content.