Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

As we continue to commercialize space and mature in-space manufacturing (ISM) processes, there is a strong need to transfer the knowledge we learn from experiments on the ground to zero-gravity environments. Physics-motivated manufacturing processes, like additive manufacturing, experience a shift in fabrication parameters due to the absence of gravity and the change of environments. Thus, we found traditional machine learning methods are not capable of addressing this domain shift and present a transfer learning scheme as a solution in this paper. We tested a kernel ridge regression model built for heterogeneous transfer learning (KRR-HeITL) on data from the electrohydrodynamic inkjet printing (EHD printing) process. EHD printing is a process that uses electrical force to control material flows, thus achieving the fabrication of electronics without requiring gravity. Our team has successfully conducted three rounds of parabolic flights to validate this technology for ISM. We trained on multiple datasets built from on-ground experiments and tested using zero-gravity printing data obtained from parabolic flight tests. Measurements of the Taylor cone both on-ground and in zero-gravity were taken and exploited as a part of the training data. We found that our method obtains good interpolation accuracy (MAPE 3.85%) compared to traditional machine learning methods (MAPE 16.84%) for predicting the printed line width. We concluded that the KRR-HeITL method is well suited for zero-gravity domain shifts of EHD printing parameters. This study paves the way for future predictions of ISM parameters when there are only on-ground experiments or very limited zero-gravity datasets for a given process.

References

1.
Hoffmann
,
M.
, and
Elwany
,
A.
,
2023
, “
In-Space Additive Manufacturing: A Review
,”
ASME J. Manuf. Sci. Eng.
,
145
(
2
), p.
020801
.
2.
Prater
,
T.
,
Werkheiser
,
N.
,
Ledbetter
,
F.
,
Timucin
,
D.
,
Wheeler
,
K.
, and
Snyder
,
M.
,
2018
, “
3D Printing in Zero G Technology Demonstration Mission: Complete Experimental Results and Summary of Related Material Modeling Efforts
,”
Int. J. Adv. Manuf. Technol.
,
101
(
1–4
), pp.
391
417
.
3.
“ESA Launches First Metal 3D Printer to ISS,” European Space Agency. https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/ESA_launches_first_metal_3D_printer_to_ISS, Accessed January 31, 2024.
4.
“Three Years of 3D Printing on the Space Station,” The Center for the Advancement of Science in Space, Inc. (CASIS), https://www.issnationallab.org/three-years-of-3d-printing-on-the-space-station/, Accessed March 25, 2019.
5.
Haga
,
M.
,
Maekawa
,
T.
,
Kuwahara
,
K.
,
Ohara
,
A.
,
Kawasakl
,
K.
,
Harada
,
T.
,
Yoda
,
S.
, and
Nakamura
,
T.
,
1995
, “
Effect of Electric Field on Marangoni Convection Under Microgravity
,”
J. Japan Soc. Microgravity Appl.
,
12
(
1
), p.
19
.
6.
Edwards
,
A. P. R.
,
Osborne
,
B. P.
,
Stoltzfus
,
J. M.
,
Howes
,
T.
, and
Steinberg
,
T. A.
,
2002
, “
Instabilities and Drop Formation in Cylindrical Liquid Jets in Reduced Gravity
,”
Phys. Fluids
,
14
(
10
), pp.
3432
3438
.
7.
Osborne
,
B. P.
, and
Steinberg
,
T. A.
,
2006
, “
An Experimental Investigation Into Liquid Jetting Modes and Break-Up Mechanisms Conducted in a New Reduced Gravity Facility
,”
Microgravity Sci. Technol.
,
18
(
3–4
), pp.
57
61
.
8.
Li
,
W.
,
Lan
,
D.
, and
Wang
,
Y.
,
2020
, “
Exploration of Direct-Ink-Write 3D Printing in Space: Droplet Dynamics and Patterns Formation in Microgravity
,”
Microgravity Sci. Technol.
,
32
(
5
), pp.
935
940
.
9.
Zocca
,
A.
,
Lüchtenborg
,
J.
,
Mühler
,
T.
,
Wilbig
,
J.
,
Mohr
,
G.
,
Villatte
,
T.
,
Léonard
,
F.
, et al
,
2019
, “
Enabling the 3D Printing of Metal Components in µ-Gravity
,”
Adv. Mater.
,
4
(
10
), p.
1900506
.
10.
D’Angelo
,
O.
,
Kuthe
,
F.
,
Liu
,
S.-J.
,
Wiedey
,
R.
,
Bennett
,
J. M.
,
Meisnar
,
M.
,
Barnes
,
A.
,
Kranz
,
W. T.
,
Voigtmann
,
T.
, and
Meyer
,
A.
,
2021
, “
A Gravity-Independent Powder-Based Additive Manufacturing Process Tailored for Space Applications
,”
Addit. Manuf.
,
47
, p.
102349
.
11.
Reitz
,
B.
,
Lotz
,
C.
,
Gerdes
,
N.
,
Linke
,
S.
,
Olsen
,
E.
,
Pflieger
,
K.
,
Sohrt
,
S.
, et al
,
2021
, “
Additive Manufacturing Under Lunar Gravity and Microgravity
,”
Microgravity Sci. Technol.
,
33
(
2
), pp.
1
12
.
12.
Taminger
,
K. M. B.
,
Harley
,
R. A.
, and
Dicus
,
D. L.
,
2002
,
Solid Freeform Fabrication: An Enabling Technology for Future Space Missions
,
Metals and Thermal Structures Branch, NASA Langley Research Cente
,
Hampton, VA
.
13.
Gu
,
H.
, and
Li
,
L.
,
2019
, “
Computational Fluid Dynamic Simulation of Gravity and Pressure Effects in Laser Metal Deposition for Potential Additive Manufacturing in Space
,”
Int. J. Heat Mass Transfer
,
140
, pp.
51
65
.
14.
Dou
,
R.
,
Tang
,
W.
,
Hu
,
K.
, and
Wang
,
L.
,
2022
, “
Ceramic Paste for Space Stereolithography 3D Printing Technology in Microgravity Environment
,”
J. Eur. Ceram. Soc.
,
42
(
9
), pp.
3968
3975
.
15.
Hafley
,
R. A.
,
Taminger
,
K. M. B.
, and
Bird
,
R. K.
,
2007
,
Electron Beam Freeform Fabrication in the Space
,
NASA Langley Research Center
,
Hampton, VA
.
16.
Zhang
,
J.
,
Van Hooreweder
,
B.
, and
Ferraris
,
E.
,
2022
, “
Fused Filament Fabrication on the Moon
,”
J. Miner. Met. Mater. Soc.
,
74
(
3
), pp.
1111
1119
.
17.
Kauzya
,
J.-B.
,
Hayes
,
B.
,
Hayes
,
A. C.
,
Thompson
,
J. F.
,
Bellerjeau
,
C.
,
Evans
,
K.
,
Osio-Norgaard
,
J.
, et al
,
2024
, “
Direct Ink Writing of Viscous Inks in Variable Gravity Regimes Using Parabolic Flights
,”
Acta Astronaut.
,
219
, pp.
569
579
.
18.
Qu
,
M.
,
Meng
,
Z.
,
Gao
,
T.
,
He
,
J.
, and
Li
,
D.
,
2023
, “
Exploration of Electrohydrodynamic Printing Potentially for In-Space Fabrication of Microscale Functional Structures: A Preliminary Study by an Anti-Gravity Configuration
,”
Addit. Manuf.
,
61
, p.
103349
.
19.
Lyu
,
H.
,
Zhang
,
X.
,
Liu
,
F.
,
Huang
,
Y.
,
Zhang
,
Z.
,
Jiang
,
S.
, and
Qin
,
H.
,
2019
, “
Fabrication of Micro-Scale Radiation Shielding Structures Using Tungsten Nanoink Through Electrohydrodynamic Inkjet Printing
,”
J. Micromech. Microeng.
,
29
(
11
), p.
115004
.
20.
Zeleny
,
J.
,
1917
, “
Instability of Electrified Liquid Surfaces
,”
Am. Phys. Soc.
,
10
(
1
), p.
1
.
21.
Taylor
,
G.
, “
Disintegration of Water Drops in an Electric Field
,”
Proc. R. Soc. London, Ser. A
,
280
(
1382
), pp.
383
397
.
22.
Mkhize
,
N.
, and
Bhaskaran
,
H.
,
2021
, “
Electrohydrodynamic Jet Printing: Introductory Concepts and Considerations
,”
Small Sci.
,
2
(
2
), p.
2100073
.
23.
Han
,
Y.
, and
Dong
,
J.
,
2018
, “
Electrohydrodynamic Printing for Advanced Micro/Nanomanufacturing: Current Progresses, Opportunities, and Challenges
,”
ASME J. Micro Nano-Manuf.
,
6
(
4
), p.
040802
.
24.
Jayasinghe
,
S. N.
,
Qureshi
,
A. N.
, and
Eagles
,
P. A. M.
,
2006
, “
Electrohydrodynamic Jet Processing: an Advanced Electric-Field-Driven Jetting Phenomenon for Processing Living Cells
,”
Small
,
2
(
2
), pp.
216
219
.
25.
Altun
,
E.
,
Ekren
,
N.
,
Kuruca
,
S. E.
, and
Gunduz
,
O.
,
2019
, “
Cell Studies on Electrohydrodynamic (EHD)-3D-Bioprinted Bacterial Cellulose\Polycaprolactone Scaffolds for Tissue Engineering
,”
Mater. Lett.
,
234
, pp.
163
167
.
26.
Khan
,
S.
,
Hoi Doh
,
Y.
,
Khan
,
A.
,
Rahman
,
A.
,
Choi
,
K. H.
, and
Kim
,
D. S.
,
2011
, “
Direct Patterning and Electrospray Deposition Through EHD for Fabrication of Printed Thin Film Transistors
,”
Curr. Appl. Phys.
,
11
(
1
), pp.
S271
S279
.
27.
Jang
,
Y.
,
Kim
,
J.
, and
Byun
,
D.
,
2013
, “
Invisible Metal-Grid Transparent Electrode Prepared by Electrohydrodynamic (EHD) Jet Printing
,”
J. Phys. D: Appl. Phys.
,
46
(
15
), p.
155103
.
28.
Huang
,
Y.
,
Cao
,
Y.
, and
Qin
,
H.
,
2022
, “
Electric Field Assisted Direct Writing and 3D Printing of Low-Melting Alloy
,”
Adv. Eng.
,
24
(
9
), p.
2200091
.
29.
Jiang
,
L.
,
Li
,
W.
,
Wolf
,
R.
,
Marander
,
M.
,
Kirscht
,
T.
,
Liu
,
F.
,
Jones
,
J. M.
,
Hill
,
C.
,
Jiang
,
S.
, and
Qin
,
H.
,
2024
, “
High-Sensitivity Fully Printed Flexible BaTiO3-Based Capacitive Humidity Sensor for In-Space Manufacturing by Electrohydrodynamic Inkjet Printing
,”
IEEE Sens. J.
,
24
(
15
), pp.
24659
24667
.
30.
Ahmad
,
S.
,
Rahman
,
K.
,
Shakeel
,
M.
,
Qasuria
,
T.
,
Cheema
,
T.
, and
Khan
,
A.
,
2021
, “
A Low-Cost Printed Humidity Sensor on Cellulose Substrate by EHD Printing
,”
J. Mater. Res.
,
36
(
18
), pp.
3667
3678
.
31.
Ahn
,
J.-H.
,
Hong
,
H.-J.
, and
Lee
,
C.-Y.
,
2021
, “
Temperature-Sensing Inks Using Electrohydrodynamic Inkjet Printing Technology
,”
Materials
,
14
(
19
), p.
5623
.
32.
Li
,
B.
,
Liang
,
W.
, and
Ren
,
F.
,
2022
, “
Electrohydrodynamic (EHD) Inkjet Printing Flexible Pressure Sensors With a Multilayer Structure and Periodically Patterned Ag Nanoparticles
,”
J. Mater. Sci.: Mater. Electron.
,
33
(
11
), pp.
18734
18750
.
33.
Zhang
,
X.
,
Chi
,
X.
,
Li
,
Z.
,
Yuan
,
Z.
,
Yang
,
J.
,
Zhu
,
L.
, and
Zhang
,
F.
,
2020
, “
An Electrohydrodynamic (EHD) Printing Method With Nanosilver Ink for Flexible Electronics
,”
Int. J. Mod. Phys. B
,
34
(
17
), p.
2050154
.
34.
Wang
,
H.
,
Zhang
,
Y.
,
Liu
,
Y.
,
Chen
,
Z.
,
Li
,
Y.
,
Lia
,
X.
, and
Xu
,
X.
,
2023
, “
High-Efficiency and High-Resolution Patterned Quantum Dot Light Emitting Diodes by Electrohydrodynamic Printing
,”
Nanoscale Adv.
,
5
(
4
), pp.
1183
1189
.
35.
Li
,
H.
,
Duan
,
Y.
,
Shao
,
Z.
,
Zhang
,
G.
,
Li
,
H.
,
Huang
,
Y.
, and
Yin
,
Z.
,
2020
, “
High-Resolution Pixelated Light Emitting Diodes Based on Electrohydrodynamic Printing and Coffee-Ring-Free Quantum Dot Film
,”
Adv. Mater.
,
5
(
10
), p.
2000401
.
36.
Jiang
,
L.
,
Yu
,
L.
,
Premaratne
,
P.
,
Zhang
,
Z.
, and
Qin
,
H.
,
2021
, “
CFD-Based Numerical Modeling to Predict the Dimensions of Printed Droplets in Electrohydrodynamic Inkjet Printing
,”
J. Manuf. Process.
,
66
, pp.
125
132
.
37.
Singh
,
S. K.
,
Rai
,
N.
, and
Subramanian
,
A.
,
2023
, “
Machine Learning-Informed Predictive Design and Analysis of Electrohydrodynamic Printing Systems
,”
Adv. Eng.
,
25
(
19
), p.
2300740
.
38.
Qin
,
J.
,
Hu
,
F.
,
Liu
,
Y.
,
Witherell
,
P.
,
Wang
,
C. C. L.
,
Rosen
,
D. W.
,
Simpson
,
T. W.
,
Lu
,
Y.
, and
Tang
,
Q.
,
2022
, “
Research and Application of Machine Learning for Additive Manufacturing
,”
Addit. Manuf.
,
52
, p.
102691
.
39.
Wang
,
C.
,
Tan
,
X. P.
,
Tor
,
S. B.
, and
Lim
,
C. S.
,
2020
, “
Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives
,”
Addit. Manuf.
,
36
, p.
101538
.
40.
Piovarči
,
M.
,
Foshey
,
M.
,
Xu
,
J.
,
Erps
,
T.
,
Babaei
,
V.
,
Didyk
,
P.
,
Rusinkiewicz
,
S.
,
Matusik
,
W.
, and
Bickel
,
B.
,
2022
, “
Closed-Loop Control of Direct Ink Writing Via Reinforcement Learning
,”
ACM Trans. Graphics
,
41
(
4
), pp.
1
10
.
41.
Zhang
,
X.
,
Lies
,
B.
,
Lyu
,
H.
, and
Qin
,
H.
,
2019
, “
IN-Situ Monitoring of Electrohydrodynamic Inkjet Printing Via Scalar Diffraction for Printed Droplets
,”
J. Manuf. Syst.
,
53
, pp.
1
10
.
42.
Jiang
,
L.
,
Premaratne
,
P.
,
Huang
,
Y.
,
Zhang
,
Z.
, and
Qin
,
H.
,
2021
, “
Modeling and Experimental Validation of Droplet Generation in Electrohydrodynamic Inkjet Printing for Prediction of Printing Quality
,”
Proceedings of the ASME 2021 16th International Manufacturing Science and Engineering Conference
,
Virtual
,
June 21–25
.
43.
Lu
,
L.
,
Hou
,
J.
,
Yuan
,
S.
,
Yao
,
X.
,
Li
,
Y.
, and
Zhu
,
J.
,
2023
, “
Deep Learning-Assisted Real-Time Defect Detection and Closed-Loop Adjustment for Additive Manufacturing of Continuous Fiber-Reinforced Polymer Composites
,”
Rob. Comput. Integr. Manuf.
,
79
, p.
102431
.
44.
Lies
,
B. T.
,
Cai
,
Y.
,
Spahr
,
E.
,
Lin
,
K.
, and
Qin
,
H.
,
2018
, “
Machine Vision Assisted Micro-Filament Detection for Real-Time Monitoring of Electrohydrodynamic Inkjet Printing
,”
Procedia Manuf.
,
26
, pp.
29
39
.
45.
Singh
,
S. K.
, and
Sarma
,
S.
,
2022
, “
Taylor Cone Height as a Tool to Understand Properties of Electrospun PVDF Nanofibers
,”
J. Electrostat.
,
120
, p.
103770
.
46.
Mieszczanek
,
P.
,
Robinson
,
T. M.
,
Dalton
,
P. D.
, and
Hutmacher
,
D. W.
,
2021
, “
Convergence of Machine Vision and Melt Electrowriting
,”
Adv. Mater.
,
33
(
29
), p.
2100519
.
47.
Iman
,
M.
,
Arabnia
,
H.
, and
Rasheed
,
K.
,
2023
, “
A Review of Deep Transfer Learning and Recent Advancements
,”
Technologies
,
11
(
2
), p.
40
.
48.
Zhuang
,
F.
,
Qi
,
Z.
,
Duan
,
K.
,
Xi
,
D.
,
Zhu
,
Y.
, and
Zhu
,
H.
,
2019
, “
A Comprehensive Survey on Transfer Learning
,”
Proc. IEEE
,
109
(
1
), pp.
43
76
.
49.
Pan
,
S.
, and
Yang
,
Q.
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.
50.
Sun
,
J.
,
Jing
,
L.
,
Zhan
,
N.
,
Huang
,
D.
, and
Liang
,
Y. C.
,
2020
, “
Electrohydrodynamic Printing Process Monitoring for Diverse Microstructure Bioscaffold Fabrication
,”
ICBET ‘20: Proceedings of the 2020 10th International Conference on Biomedical Engineering and Technology
,
Tokyo, Japan
,
Sept. 15–18
, pp.
305
310
.
51.
Friedjungová
,
M.
, and
Jiřina
,
M.
,
2017
, “
Asymmetric Heterogeneous Transfer Learning: A Survey
,”
Proceedings of the Sixth International Conference on Data Science, Technology and Applications DATA, Vol. 1
,
Madrid, Spain
,
July 24–26
.
52.
Bamne
,
B.
,
Shrivastava
,
N.
,
Parashar
,
L.
, and
Singh
,
U.
,
2020
, “
Transfer Learning-Based Object Detection by Using Convolutional Neural Networks
,”
2020 International Conference on Electronics and Sustainable Communication Systems (ICESC)
,
Coimbatore, India
,
July 2–4
.
53.
Cheng
,
L.
,
Wang
,
K.
, and
Tsung
,
F.
,
2020
, “
A Hybrid Transfer Learning Framework for In-Plane Freeform Shape Accuracy Control in Additive Manufacturing
,”
IISE Trans.
,
53
(
3
), pp.
298
312
.
54.
Aboutaleb
,
A. M.
,
Bian
,
L.
,
Elwany
,
A.
,
Shamsaei
,
N.
,
Thompson
,
S. M.
, and
Tapia
,
G.
,
2016
, “
Accelerated Process Optimization for Laser-Based Additive Manufacturing by Leveraging Similar Prior Studies
,”
IISE Trans.
,
49
(
1
), pp.
31
44
.
55.
Zhang
,
H.
,
Choi
,
J. P.
,
Moon
,
S. K.
, and
Ngo
,
T. H.
,
2021
, “
A Knowledge Transfer Framework to Support Rapid Process Modeling in Aerosol Jet Printing
,”
Adv. Eng. Inform.
,
48
, p.
101264
.
56.
Waisberg
,
E.
,
Ong
,
J.
,
Kamran
,
S. A.
,
Paladugu
,
P.
,
Zaman
,
N.
,
Lee
,
A. G.
, and
Tavakkoli
,
A.
,
2023
, “
Transfer Learning as an AI-Based Solution to Address Limited Datasets in Space Medicine
,”
Life Sci. Space Res.
,
36
, pp.
36
38
.
57.
Ogundipe
,
C.
, and
Ellery
,
A.
,
2024
, “
Adaptive Solution to Transfer Learning of Neural Network Controllers From Earth to Space Environments
,”
Expert Syst.
, p.
e13549
.
58.
He
,
J.-H.
,
2020
, “
On the Height of Taylor Cone in Electrospinning
,”
Results Phys.
,
17
, p.
103096
.
59.
Garcke
,
J.
, and
Vanck
,
T.
, “Importance Weighted Inductive TransferLearning for Regression,”
2014
,
Machine Learning and Knowledge Discovery in Databases
,
Springer Cham
,
Nancy, France
.
60.
Sukhija
,
S.
, and
Krishnan
,
N. C.
,
2019
, “
Supervised Heterogeneous Feature Transfer Via Random Forests
,”
Artif. Intell.
,
268
, pp.
30
53
.
61.
Shi
,
X.
,
Liu
,
Q.
,
Fan
,
W.
,
Yu
,
P. S.
, and
Zhu
,
R.
,
2010
, “
Ransfer Learning on Heterogenous Feature Spaces via Spectral Transformatio
,”
2010 IEEE International Conference on Data Mining
,
Sydney, Australia
,
Dec. 13–17
.
62.
Li
,
S.
,
Cai
,
T. T.
, and
Li
,
H.
,
2022
, “
Transfer Learning for High-Dimensional Linear Regression: Prediction, Estimation and Minimax Optimality
,”
J. R. Stat. Soc. Ser. B
,
84
(
1
), pp.
149
173
.
63.
Gosain
,
A.
, and
Sardana
,
S.
,
2017
, “
Handling Class Imbalance Problem Using Oversampling Techniques: A Review
,”
International Conference on Advances in Computing, Communications and Informatics (ICACCI)
,
Udupi, India
,
Sept. 21–24
.
64.
Krawczyk
,
B.
,
2016
, “
Learning From Imbalanced Data: Open Challenges and Future Directions
,”
Prog. Artif. Intell.
,
5
(
4
), pp.
221
232
.
65.
Hu
,
M.
, and
Li
,
J.
,
2019
, “Exploring Bias in GAN-Based Data Augmentation for Small Samples,” arXiv.org.
66.
Matchev
,
K. T.
,
Roman
,
A.
, and
Shyamsundar
,
P.
,
2022
, “
Uncertainties Associated With GAN-Generated Datasets in High Energy Physics
,”
SciPost Phys.
,
12
(
3
), p.
104
.
You do not currently have access to this content.