Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Electrohydrodynamic (EHD) printing is an additive manufacturing technique capable of microscale and nanoscale structures for biomedical, aerospace, and electronic applications. To realize stable printing at its full resolution, the monitoring of jetting behavior while printing and optimization of the printing process are necessary. Various machine vision control schemes have been developed for EHD printing. However, in-line machine vision systems are currently limited because only limited information can be captured in situ toward quality assurance and process optimization. In this article, we presented a machine learning-embedded machine vision control scheme that is able to characterize jetting and recognize the printing quality by using only low-resolution observations of the Taylor Cone. An innovative approach was introduced to identify and measure cone-jet behavior using low-fidelity image data at various applied voltage levels, stand-off distances, and printing speeds. The scaling law between voltages and the line widths enables quality prediction of final printed patterns. A voting ensemble composed of k-nearest neighbor (KNN), classification and regression tree (CART), random forest, logistic regression, gradient boost classifier, and bagging models was employed with optimized hyperparameters to classify the jets to their corresponding applied voltages, achieving an 88.43% accuracy on new experimental data. These findings demonstrate that it is possible to analyze jetting status and predict high-resolution pattern dimensions by using low-fidelity data. The voltage analysis based on the in situ data will provide additional insights for system stability, and it can be used to establish the error functions for future advanced control schemes.

References

1.
Lies
,
B. T.
,
Cai
,
Y.
,
Spahr
,
E.
,
Lin
,
K.
, and
Qin
,
H.
,
2018
, “
Machine Vision Assisted Micro-Filament Detection for Real-Time Monitoring of Electrohydrodynamic Inkjet Printing
,”
Procedia Manuf.
,
26
, pp.
29
39
.
2.
Han
,
Y.
, and
Dong
,
J.
,
2018
, “
Electrohydrodynamic Printing for Advanced Micro/Nanomanufacturing: Current Progresses, Opportunities, and Challenges
,”
J. Micro Nanomanuf.
,
6
(
4
), p.
040802
.
3.
Luo
,
J.
,
Zhang
,
L.
,
Wu
,
T.
,
Song
,
H.
, and
Tang
,
C.
,
2021
, “
Flexible Piezoelectric Pressure Sensor With High Sensitivity for Electronic Skin Using Near-Field Electrohydrodynamic Direct-Writing Method
,”
Extreme Mech. Lett.
,
48
, p.
101279
.
4.
Altun
,
E.
,
Ekren
,
N.
,
Kuruca
,
S. E.
, and
Gunduz
,
O.
,
2019
, “
Cell Studies on Electrohydrodynamic (EHD)-3D-Bioprinted Bacterial Cellulose\Polycaprolactone Scaffolds for Tissue Engineering
,”
Mater. Lett.
,
234
, pp.
163
167
.
5.
Brishty
,
F. P.
,
Urner
,
R.
, and
Grau
,
G.
,
2022
, “
Machine Learning Based Data Driven Inkjet Printed Electronics: Jetting Prediction for Novel Inks
,”
Flex. Print. Electron.
,
7
(
1
), p.
015009
.
6.
Taylor
,
G. I.
,
1964
, “
Disintegration of Water Drops in an Electric Field
,”
Proc. R Soc. Lond. A. Math. Phys. Sci.
,
280
(
1382
), pp.
383
397
.
7.
Qin
,
H.
,
Dong
,
J.
,
Lee
,
Y.-S.
, and
Fitts
,
E. P.
,
2015
, “
AC-Pulse Modulated Electrohydrodynamic Jet Printing and Electroless Copper Deposition for Conductive Microscale Patterning on Flexible Insulating Substrates
,”
Robot. Comput.-Integr. Manuf.
,
43
, pp.
179
187
.
8.
He
,
Y.
,
Li
,
L.
,
Su
,
Z.
,
Xu
,
L.
,
Guo
,
M.
,
Duan
,
B.
,
Wang
,
W.
,
Cheng
,
B.
,
Sun
,
D.
, and
Hai
,
Z.
.,
2023
, “
Electrohydrodynamic Printed Ultra-Micro AgNPs Thin Film Temperature Sensors Array for High-Resolution Sensing
,”
Micromachines (Basel)
,
14
(
8), p.
1621
.
9.
Mohammadi
,
S.
, and
Haeri
,
M.
,
2022
, “
Nested Saturated Feedback Control of an Electro-Hydrodynamic Jet Printer
,”
e-Prime—Adv. Electr. Eng., Electron. Energy
,
2
, p.
100037
.
10.
Abbas
,
Z.
,
Wang
,
D.
,
Du
,
Z.
,
Qian
,
J.
,
Zhao
,
K.
,
Du
,
Z.
,
Wang
,
Z.
,
Cui
,
Y.
,
Zhang
,
X.
, and
Liang
,
J.
,
2021
, “
Numerical Simulation of Electrohydrodynamic Jet and Printing Micro-Structures on Flexible Substrate
,”
Microsyst. Technol.
,
27
(
8
), pp.
3125
3139
.
11.
Pan
,
Y.
, and
Zeng
,
L.
,
2019
, “
Simulation and Validation of Droplet Generation Process for Revealing Three Design Constraints in Electrohydrodynamic Jet Printing
,”
Micromachines (Basel)
,
10
(
2
), p.
94
.
12.
Yang
,
X.
,
Liu
,
R.
,
Li
,
L.
,
Yin
,
Z.
,
Chen
,
K.
, and
Wang
,
D. F.
,
2020
, “
The Study of Electrohydrodynamic Printing by Numerical Simulation
,”
J. Electr. Eng.
,
71
(
6
), pp.
413
418
.
13.
Jiang
,
L.
,
Yu
,
L.
,
Premaratne
,
P.
,
Zhang
,
Z.
, and
Qin
,
H.
,
2021
,
“CFD-Based Numerical Modeling to Predict the Dimensions of Printed Droplets in Electrohydrodynamic Inkjet Printing
,”
J. Manuf. Process.
,
66
, pp.
125
132
.
14.
Kim
,
K. Y.
, and
Lee
,
C. Y.
,
2021
, “
Real-Time Detection of Damage Evolution Using Electrohydrodynamic Printing
,”
Eng. Fail. Anal.
,
119
, p.
104974
.
15.
Mieszczanek
,
P.
,
Robinson
,
T. M.
,
Dalton
,
P. D.
, and
Hutmacher
,
D. W.
,
2021
, “
Convergence of Machine Vision and Melt Electrowriting
,”
Adv. Mater.
,
33
(
29
), p.
2100519
.
16.
Petsiuk
,
A. L.
, and
Pearce
,
J. M.
,
2020
, “
Open Source Computer Vision-Based Layer-Wise 3D Printing Analysis
,”
Addit. Manuf.
,
36
, p.
101473
.
17.
Radel
,
S.
,
Diourte
,
A.
,
Soulié
,
F.
,
Company
,
O.
, and
Bordreuil
,
C.
,
2019
, “
Skeleton Arc Additive Manufacturing With Closed Loop Control
,”
Addit. Manuf.
26
, pp.
106
116
.
18.
Liu
,
C.
,
Chung Chee Law
,
A.
,
Roberson
,
D.
, and
Kong
,
Z.
,
2019
, “
Image Analysis-Based Closed Loop Quality Control for Additive Manufacturing With Fused Filament Fabrication
,”
J. Manuf. Syst.
,
51
, pp.
75
86
.
19.
Sitthi-Amorn
,
P.
,
Ramos
,
J. E.
,
Wangy
,
Y.
,
Kwan
,
J.
,
Lan
,
J.
,
Wang
,
W.
, and
Matusik
,
W.
,
2015
, “
MultiFab: A Machine Vision Assisted Platform for Multi-Material 3D Printing
,”
ACM Trans. Graphics.
,
34
(
4
), pp.
1
11
.
20.
Singh
,
R.
,
Zhang
,
X.
,
Chen
,
Y.
,
Zheng
,
J.
, and
Qin
,
H.
,
2018
, “
In-Situ Real-Time Characterization of Micro-Filaments for Electrohydrodynamic Ink-Jet Printing Using Machine Vision
,”
Procedia Manuf.
,
17
, pp.
45
52
.
21.
Kim
,
H. H.
,
Kim
,
J. H.
, and
Ogata
,
A.
,
2011
, “
Time-Resolved High-Speed Camera Observation of Electrospray
,”
J. Aerosol. Sci.
,
42
(
4
), pp.
249
263
.
22.
Park
,
I.
,
Kim
,
S. B.
,
Hong
,
W. S.
, and
Kim
,
S. S.
,
2015
, “
Classification of Electrohydrodynamic Spraying Modes of Water in Air at Atmospheric Pressure
,”
J. Aerosol. Sci.
,
89
, pp.
26
30
.
23.
Wang
,
Z.
,
Wang
,
Q.
,
Li
,
B.
,
Zhang
,
Y.
,
Wang
,
J.
, and
Tu
,
J.
,
2020
, “
An Experimental Investigation on Cone-Jet Mode in Electrohydrodynamic (EHD) Atomization
,”
Exp. Therm. Fluid Sci.
,
114
, p.
110054
.
24.
Blaisot
,
J. B.
, and
Yon
,
J.
,
2005
, “
Droplet Size and Morphology Characterization for Dense Sprays by Image Processing: Application to the Diesel Spray
,”
Exp. Fluids
,
39
(
6
), pp.
977
994
.
25.
Altın
,
B.
,
Yu
,
L.
,
Tse
,
L.
, and
Barton
,
K.
,
2014
, “
Visual Feedback Based Droplet Size Regulation in Electrohydrodynamic Jet Printing
,”
Dynamic Systems and Control Conference
,
San Antonio, TX
,
Oct. 22–24
.
26.
Wang
,
F.
,
Elbadawi
,
M.
,
Tsilova
,
S. L.
,
Gaisford
,
S.
,
Basit
,
A. W.
, and
Parhizkar
,
M.
,
2022
, “
Machine Learning to Empower Electrohydrodynamic Processing
,”
Mater. Sci. Eng. C
,
132
, p.
112553
.
27.
Sun
,
J.
,
Jing
,
L.
,
Fan
,
X.
,
Gao
,
X.
, and
Liang
,
Y. C.
,
2019
, “
Electrohydrodynamic Printing Process Monitoring by Microscopic Image Identification
,”
Int. J. Bioprint
,
5
(
1
), p.
1
9
.
28.
Huang
,
J.
,
Segura
,
L. J.
,
Wang
,
T.
,
Zhao
,
G.
,
Sun
,
H.
, and
Zhou
,
C.
,
2020
, “
Unsupervised Learning for the Droplet Evolution Prediction and Process Dynamics Understanding in Inkjet Printing
,”
Addit. Manuf.
,
35
, p.
101197
.
29.
Wang
,
T.
,
Kwok
,
T. H.
,
Zhou
,
C.
, and
Vader
,
S.
,
2018
, “
IN-Situ Droplet Inspection and Closed-Loop Control System Using Machine Learning for Liquid Metal Jet Printing
,”
J. Manuf. Syst.
,
47
, pp.
83
92
.
30.
Jiang
,
L.
,
Li
,
W.
,
Wolf
,
R.
,
Marander
,
M.
,
Kirscht
,
T.
,
Liu
,
F.
,
Jones
,
J. M.
,
Hill
,
C.
,
Jiang
,
S.
, and
Qin
,
H.
,
2024
, “
High-Sensitivity Fully Printed Flexible BaTiO3-Based Capacitive Humidity Sensor for In-Space Manufacturing by Electrohydrodynamic Inkjet Printing
,”
IEEE Sens. J.
,
24
(
15
), pp.
24659
24667
.
31.
Kong
,
Q.
,
Yang
,
S.
,
Wang
,
Q.
,
Wang
,
Z.
,
Dong
,
Q.
, and
Wang
,
J.
,
2022
, “
Dynamics of Electrified Jets in Electrohydrodynamic Atomization
,”
Case Stud. Therm. Eng.
,
29
,
101725
.
32.
Lee
,
A.
,
Jin
,
H.
,
Dang
,
H. W.
,
Choi
,
K. H.
, and
Ahn
,
K. H.
,
2013
, “
Optimization of Experimental Parameters to Determine the Jetting Regimes in Electrohydrodynamic Printing
,”
Langmuir
,
29
(
44
), pp.
13630
13639
.
33.
Song
,
Z.
,
Li
,
S.
,
Hou
,
B.
,
Cheng
,
Z.
,
Xue
,
Y.
, and
Chen
,
B.
,
2023
, “
High-Sensitivity Paper-Based Capacitive Humidity Sensors for Respiratory Monitoring
,”
IEEE Sens. J.
,
23
(
3
), pp.
2291
2302
.
34.
Chen
,
C. H.
,
Seville
,
D. A.
, and
Aksay
,
I. A.
,
2006
, “
Scaling Laws for Pulsed Electrohydrodynamic Drop Formation
,”
Appl. Phys. Lett.
,
89
(
12
), p.
124103
.
35.
Park
,
J. U.
,
Hardy
,
M.
,
Kang
,
S. J.
,
Barton
,
K.
,
Adair
,
K.
,
Mukhopadhyay
,
D. k.
,
Lee
,
C. Y.
, et al
,
2007
, “
High-Resolution Electrohydrodynamic Jet Printing
,”
Nat. Mater.
,
6
(
10
), pp.
782
789
.
36.
Choi
,
H. K.
,
Park
,
J. U.
,
Park
,
O. O.
,
Ferreira
,
P. M.
,
Georgiadis
,
J. G.
, and
Rogers
,
J. A.
,
2008
, “
Scaling Laws for Jet Pulsations Associated With High-Resolution Electrohydrodynamic Printing
,”
Appl. Phys. Lett.
,
92
(
12
), p.
123109
.
37.
Smith
,
P. J.
,
Shin
,
D. Y.
,
Stringer
,
J. E.
,
Derby
,
B.
, and
Reis
,
N.
,
2006
, “
Direct Ink-Jet Printing and Low Temperature Conversion of Conductive Silver Patterns
,”
J. Mater. Sci.
,
41
(
13
) pp.
4153
4158
.
38.
Marginean
,
I.
,
2024
, “
Classification of Electrospray Axial Regimes as Revealed by Spray Current Measurements
,”
Int. J. Mass Spectrom.
,
495
, p.
117150
.
39.
Cong
,
C.
,
Li
,
X.
,
Xiao
,
W.
,
Li
,
J.
,
Jin
,
M.
,
Kim
,
S.H.
, and
Zhang
,
P.
,
2022
, “
Electrohydrodynamic Printing for Demanding Devices: A Review of Processing and Applications
,”
Nanotechnol. Rev.
,
11
(
1
), pp.
3305
3334
.
40.
Mkhize
,
N.
, and
Bhaskaran
,
H.
,
2022
, “
Electrohydrodynamic Jet Printing: Introductory Concepts and Considerations
,”
Small Sci.
,
2
(
2
), p.
2100073
.
41.
Huang
,
Y.
,
Jiang
,
L.
,
Li
,
B.
,
Premaratne
,
P.
,
Jiang
,
S.
, and
Qin
,
H.
,
2020
, “
Study Effects of Particle Size in Metal Nanoink for Electrohydrodynamic Inkjet Printing Through Analysis of Droplet Impact Behaviors
,”
J. Manuf. Process
,
56
, pp.
1270
1276
.
You do not currently have access to this content.