Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Deep learning has impacted defect prediction in additive manufacturing (AM), which is important to ensure process stability and part quality. However, its success depends on extensive training, requiring large, homogeneous datasets—remaining a challenge for the AM industry, particularly for small- and medium-sized enterprises (SMEs). The unique and varied characteristics of AM parts, along with the limited resources of SMEs, hamper data collection, posing difficulties in the independent training of deep learning models. Addressing these concerns requires enabling knowledge sharing from the similarities in the physics of the AM process and defect formation mechanisms while carefully handling privacy concerns. Federated learning (FL) offers a solution to allow collaborative model training across multiple entities without sharing local data. This article introduces an FL framework to predict section-wise heat emission during laser powder bed fusion (LPBF), a vital process signature. It incorporates a customized long short-term memory (LSTM) model for each client, capturing the dynamic AM process's time-series properties without sharing sensitive information. Three advanced FL algorithms are integrated—federated averaging (FedAvg), FedProx, and FedAvgM—to aggregate model weights rather than raw datasets. Experiments demonstrate that the FL framework ensures convergence and maintains prediction performance comparable to individually trained models. This work demonstrates the potential of FL-enabled AM modeling and prediction where SMEs can improve their product quality without compromising data privacy.

References

1.
Gardan
,
J.
,
2017
, “
Additive Manufacturing Technologies: State of the Art and Trends
,”
Int. J. Prod. Res.
,
54
(
10
), pp.
149
168
.
2.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
3.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
4.
Chen
,
Y.
,
Peng
,
X.
,
Kong
,
L.
,
Dong
,
G.
,
Remani
,
A.
, and
Leach
,
R.
,
2021
, “
Defect Inspection Technologies for Additive Manufacturing
,”
Int. J. Extreme Manuf.
,
3
(
2
), p.
022002
.
5.
Scime
,
L.
, and
Beuth
,
J.
,
2018
, “
Anomaly Detection and Classification in a Laser Powder Bed Additive Manufacturing Process Using a Trained Computer Vision Algorithm
,”
Addit. Manuf.
,
19
, pp.
114
126
.
6.
Wang
,
C.
,
Tan
,
X.
,
Tor
,
S. B.
, and
Lim
,
C.
,
2020
, “
Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives
,”
Addit. Manuf.
,
36
(
B
), p.
101538
.
7.
Martinsuo
,
M.
, and
Luomaranta
,
T.
,
2018
, “
Adopting Additive Manufacturing in SMEs: Exploring the Challenges and Solutions
,”
J. Manuf. Technol. Manag.
,
29
(
6
), pp.
937
957
.
8.
Duray
,
R.
,
2002
, “
Mass Customization Origins: Mass or Custom Manufacturing?
,”
Int. J. Oper. Prod. Manag.
,
22
(
3
), pp.
314
328
.
9.
Pan
,
S. J.
, and
Yang
,
Q.
,
2009
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.
10.
Gou
,
J.
,
Yu
,
B.
,
Maybank
,
S. J.
, and
Tao
,
D.
,
2021
, “
Knowledge Distillation: A Survey
,”
Int. J. Comput. Vis.
,
129
(
6
), pp.
1789
1819
.
11.
Choi
,
S.
,
Kim
,
H.
, and
Cho
,
H.
,
2024
, “
Defect Detection in the Manufacturing Domain Using Product Design Data and Self-Knowledge Distillation
,”
2024 International Conference on Electronics, Information, and Communication (ICEIC)
,
Taipei, Taiwan
,
Jan. 28–31
, IEEE, pp.
1
4
.
12.
Zhang
,
Y.
, and
Yang
,
Q.
,
2021
, “
A Survey on Multi-Task Learning
,”
IEEE Trans. Knowl. Data Eng.
,
34
(
12
), pp.
5586
5609
.
13.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
14.
Liu
,
C.
,
Tian
,
W.
, and
Kan
,
C.
,
2022
, “
When AI Meets Additive Manufacturing: Challenges and Emerging Opportunities for Human-Centered Products Development
,”
J. Manuf. Syst.
,
64
(
7
), pp.
648
656
.
15.
Buckholtz
,
B.
,
Ragai
,
I.
, and
Wang
,
L.
,
2015
, “
Cloud Manufacturing: Current Trends and Future Implementations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
040902
.
16.
Kanagavelu
,
R.
,
Li
,
Z.
,
Samsudin
,
J.
,
Hussain
,
S.
,
Yang
,
F.
,
Yang
,
Y.
,
Goh
,
R. S.
, and
Cheah
,
M.
,
2021
, “Federated Learning for Advanced Manufacturing Based on Industrial IoT Data Analytics,”
Implementing Industry 4.0: The Model Factory as the Key Enabler for the Future of Manufacturing
, Vol.
202
,
Springer, Cham
, pp.
143
176
.
17.
Byrd
,
D.
, and
Polychroniadou
,
A.
,
2020
, “
Differentially Private Secure Multi-Party Computation for Federated Learning in Financial Applications
,”
Proceedings of the First ACM International Conference on AI in Finance
,
New York, NY
,
Oct. 15–16
, pp.
1
9
.
18.
Li
,
L.
,
Fan
,
Y.
,
Tse
,
M.
, and
Lin
,
K.-Y.
,
2020
, “
A Review of Applications in Federated Learning
,”
Comput. Ind. Eng.
,
149
, p.
106854
.
19.
McMahan
,
B.
,
Moore
,
E.
,
Ramage
,
D.
,
Hampson
,
S.
, and
y Arcas
,
B. A.
,
2017
, “
Communication-Efficient Learning of Deep Networks From Decentralized Data
,”
Artificial Intelligence and Statistics
,
Ft. Lauderdale, FL
,
Apr. 20–22
, PMLR, pp.
1273
1282
.
20.
da Silveira Dib
,
M. A.
,
Ribeiro
,
B.
, and
Prates
,
P.
,
2021
, “
Federated Learning as a Privacy-Providing Machine Learning for Defect Predictions in Smart Manufacturing
,”
Smart Sustain. Manuf. Syst.
,
5
(
1
), pp.
1
17
.
21.
Mehta
,
M.
, and
Shao
,
C.
,
2022
, “
Federated Learning-Based Semantic Segmentation for Pixel-Wise Defect Detection in Additive Manufacturing
,”
J. Manuf. Syst.
,
64
(
8
), pp.
197
210
.
22.
Truong
,
H. T.
,
Ta
,
B. P.
,
Le
,
Q. A.
,
Nguyen
,
D. M.
,
Le
,
C. T.
,
Nguyen
,
H. X.
,
Do
,
H. T.
,
Nguyen
,
H. T.
, and
Tran
,
K. P.
,
2022
, “
Light-Weight Federated Learning-Based Anomaly Detection for Time-Series Data in Industrial Control Systems
,”
Comput. Ind.
,
140
, p.
103692
.
23.
Hegiste
,
V.
,
Legler
,
T.
, and
Ruskowski
,
M.
,
2022
Application of Federated Learning in Manufacturing
,” arXiv:2208.04664.
24.
Shi
,
N.
, and
Kontar
,
R. A.
,
2023
, “
Personalized Federated Learning via Domain Adaptation With an Application to Distributed 3D Printing
,”
Technometrics
,
65
(
3
), pp.
328
339
.
25.
Putra
,
M. A. P.
,
Rachmawati
,
S. M.
,
Abisado
,
M.
, and
Sampedro
,
G. A.
,
2023
, “
HFTL: Hierarchical Federated Transfer Learning for Secure and Efficient Fault Classification in Additive Manufacturing
,”
IEEE Access
,
11
, pp.
54795
54807
.
26.
Shi
,
Z.
,
Li
,
Y.
, and
Liu
,
C.
,
2024
, “
Knowledge Distillation-Based Information Sharing for Online Process Monitoring in Decentralized Manufacturing System
,”
J. Intell. Manuf.
, pp.
1
16
.
27.
Zhang
,
Z.
,
Mou
,
S.
,
Reisi Gahrooei
,
M.
,
Pacella
,
M.
, and
Shi
,
J.
,
2024
, “
Federated Multiple Tensor-on-Tensor Regression (FedMTOT) for Multimodal Data Under Data-Sharing Constraints
,”
Technometrics
, pp.
1
26
.
28.
Aggour
,
K. S.
,
Kumar
,
V. S.
,
Cuddihy
,
P.
,
Williams
,
J. W.
,
Gupta
,
V.
,
Dial
,
L.
,
Hanlon
,
T.
,
Gambone
,
J.
, and
Vinciquerra
,
J.
,
2019
, “
Federated Multimodal Big Data Storage & Analytics Platform for Additive Manufacturing
,”
2019 IEEE International Conference on Big Data (Big Data)
,
Los Angeles, CA
,
Dec. 9–12
, IEEE, pp.
1729
1738
.
29.
Guo
,
S.
,
Agarwal
,
M.
,
Cooper
,
C.
,
Tian
,
Q.
,
Gao
,
R. X.
,
Grace
,
W. G.
, and
Guo
,
Y. B.
,
2022
, “
Machine Learning for Metal Additive Manufacturing: Towards a Physics-Informed Data-Driven Paradigm
,”
J. Manuf. Syst.
,
62
(
4
), pp.
145
163
.
30.
Li
,
J.
,
Jin
,
R.
, and
Hang
,
Z. Y.
,
2018
, “
Integration of Physically-Based and Data-Driven Approaches for Thermal Field Prediction in Additive Manufacturing
,”
Mater. Des.
,
139
(
4
), pp.
473
485
.
31.
Chen
,
M.
, and
Guo
,
W.
,
2023
, “
DCGAN-CNN With Physical Constraints for Porosity Prediction in Laser Metal Deposition With Unbalanced Data
,”
Manufacturing Letters
,
35
(
4
), pp.
1146
1154
.
32.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
33.
Galkin
,
G.
,
Gawade
,
V.
,
Guo
,
W.
,
Yi
,
J.
, and
Guo
,
Y.
,
2022
, “
In-Situ and Real-Time 3D Pyrometry for Thermal History Diagnosis in Laser Fusion Process
,”
Manuf. Lett.
,
33
, pp.
862
871
.
34.
Lei
,
R.
,
Guo
,
Y.
, and
Guo
,
W.
,
2024
, “
Physics-Guided Long Short-Term Memory Networks for Emission Prediction in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
146
(
1
), p.
011006
.
35.
Gawade
,
V.
,
Galkin
,
G.
,
Guo
,
Y.
, and
Guo
,
W. G.
,
2022
, “
Quantifying and Modeling Overheating Using 3D Pyrometry Map in Powder Bed Fusion
,”
Manuf. Lett.
,
33
, pp.
880
892
.
36.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2015
, “
Delving Deep Into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Santiago, Chile
,
Dec. 7–13
, pp.
1026
1034
.
37.
Li
,
T.
,
Sahu
,
A. K.
,
Zaheer
,
M.
,
Sanjabi
,
M.
,
Talwalkar
,
A.
, and
Smith
,
V.
,
2020
, “
Federated Optimization in Heterogeneous Networks
,”
Proceedings of Machine Learning and Systems
,
Austin, TX
,
Mar. 2–4
.
38.
Hsu
,
T.-M. H.
,
Qi
,
H.
, and
Brown
,
M.
,
2019
, “
Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification
,”
arXiv:1909.06335
. https://arxiv.org/abs/1909.06335
You do not currently have access to this content.