Abstract

Advancements in additive manufacturing enable the fabrication of in vitro biomimetic grafts leveraging biological materials and cells for various biomedical applications. The realization of such biofabrication typically requires time from minutes to hours depending on the scale and complexity of the models. During direct biofabrication, cell sedimentation with the resultant aggregation is extensively deemed to be one of the acute problems for precise and reliable inkjet-based bioprinting. It often results in highly unstable droplet formation, nozzle clogging, and non-uniformity of post-printing cell distribution. Our previous study has implemented active bioink circulation to mitigate cell sedimentation and aggregation within the bioink reservoir. This study focuses on the comparison of post-printing cell distribution within formed microspheres and one-layer sheets with and without active circulation. The experimental results have demonstrated a significant improvement in post-printing cell distribution under implemented active circulation. Moreover, the printed sheet samples are subject to three-day incubation to investigate the effect of cell distribution on cell viability and proliferation. It shows that compared to non-uniform cell distribution, the uniform cell distribution significantly improves cell viability (92% versus 77% at Day 3) and cell proliferation (3.3 times versus 1.7 times at Day 3). The preliminary results in this paper have demonstrated not only the high effectiveness of the active bioink circulation to improve post-printing cell distribution within microspheres and one-layer sheets, but also the critical role of the uniform post-printing cell distribution in promoting cell viability and proliferation.

References

1.
Du Plessis
,
A.
,
Broeckhoven
,
C.
,
Yadroitsava
,
I.
,
Yadroitsev
,
I.
,
Hands
,
C. H.
,
Kunju
,
R.
, and
Bhate
,
D.
,
2019
, “
Beautiful and Functional: A Review of Biomimetic Design in Additive Manufacturing
,”
Addit. Manuf.
,
27
, pp.
408
427
.
2.
Awad
,
A.
,
Goyanes
,
A.
,
Basit
,
A. W.
,
Zidan
,
A. S.
,
Xu
,
C.
,
Li
,
W.
,
Narayan
,
R. J.
, and
Chen
,
R. K.
,
2023
, “
A Review of State-of-the-Art on Enabling Additive Manufacturing Processes for Precision Medicine
,”
ASME J. Manuf. Sci. Eng.
,
145
(
1
), p.
010802
.
3.
Ouyang
,
L.
,
Armstrong
,
J. P.
,
Salmeron-Sanchez
,
M.
, and
Stevens
,
M. M.
,
2020
, “
Assembling Living Building Blocks to Engineer Complex Tissues
,”
Adv. Funct. Mater.
,
30
(
26
), p.
1909009
.
4.
Huang
,
Y.
, and
Schmid
,
S. R.
,
2018
, “
Additive Manufacturing for Health: State of the Art, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
094001
.
5.
Jin
,
Y.
,
Xiong
,
R.
,
Antonelli
,
P. J.
,
Long
,
C. J.
,
McAleer
,
C. W.
,
Hickman
,
J. J.
, and
Huang
,
Y.
,
2021
, “
Nanoclay Suspension-Enabled Extrusion Bioprinting of Three-Dimensional Soft Structures
,”
ASME J. Manuf. Sci. Eng.
,
143
(
12
), p.
121004
.
6.
Hua
,
W.
,
Mitchell
,
K.
,
Raymond
,
L.
,
Valentin
,
N.
,
Coulter
,
R.
, and
Jin
,
Y.
,
2023
, “
Embedded 3D Printing of PDMS-Based Microfluidic Chips for Biomedical Applications
,”
ASME J. Manuf. Sci. Eng.
,
145
(
1
), p.
011002
.
7.
Li
,
X.
,
Liu
,
B.
,
Pei
,
B.
,
Chen
,
J.
,
Zhou
,
D.
,
Peng
,
J.
,
Zhang
,
X.
,
Jia
,
W.
, and
Xu
,
T.
,
2020
, “
Inkjet Bioprinting of Biomaterials
,”
Chem. Rev.
,
120
(
19
), pp.
10793
10833
.
8.
Zhang
,
Z.
,
Xu
,
C.
,
Xiong
,
R.
,
Chrisey
,
D. B.
, and
Huang
,
Y.
,
2017
, “
Effects of Living Cells on the Bioink Printability During Laser Printing
,”
Biomicrofluidics
,
11
(
3
), p.
034120
.
9.
Unagolla
,
J. M.
, and
Jayasuriya
,
A. C.
,
2020
, “
Hydrogel-Based 3D Bioprinting: A Comprehensive Review on Cell-Laden Hydrogels, Bioink Formulations, and Future Perspectives
,”
Appl. Mater. Today
,
18
, p.
100479
.
10.
Divakaran
,
N.
,
Das
,
J. P.
,
Ajay Kumar
,
P. V.
,
Mohanty
,
S.
,
Ramadoss
,
A.
, and
Nayak
,
S. K.
,
2022
, “
Comprehensive Review on Various Additive Manufacturing Techniques and Its Implementation in Electronic Devices
,”
J. Manuf. Syst.
,
62
, pp.
477
502
.
11.
Castrejon-Pita
,
J. R.
,
Baxter
,
W.
,
Morgan
,
J.
,
Temple
,
S.
,
Martin
,
G.
, and
Hutchings
,
I. M.
,
2013
, “
Future, Opportunities and Challenges of Inkjet Technologies
,”
At. Sprays
,
23
(
6
), pp.
541
565
.
12.
Singh
,
S.
,
Ramakrishna
,
S.
, and
Berto
,
F.
,
2020
, “
3D Printing of Polymer Composites: A Short Review
,”
Mater. Des. Process. Commun.
,
2
(
2
), p.
e97
.
13.
Guo
,
Z.
,
Fei
,
F.
,
Song
,
X.
, and
Zhou
,
C.
,
2023
, “
Analytical Study and Experimental Verification of Shear-Thinning Ink Flow in Direct Ink Writing Process
,”
ASME J. Manuf. Sci. Eng.
,
145
(
7
), p.
071001
.
14.
Hussey
,
G. S.
,
Dziki
,
J. L.
, and
Badylak
,
S. F.
,
2018
, “
Extracellular Matrix-Based Materials for Regenerative Medicine
,”
Nat. Rev. Mater.
,
3
(
7
), pp.
159
173
.
15.
Xu
,
H.
,
Martinez Salazar
,
D. M.
,
Shahriar
,
M.
, and
Xu
,
C.
,
2022
, “
Investigation and Characterization of Cell Aggregation During and After Inkjet-Based Bioprinting of Cell-Laden Bioink
,”
ASME J. Manuf. Sci. Eng.
,
144
(
10
), p.
104501
.
16.
Shahriar
,
M.
,
Liu
,
J.
,
Xu
,
H.
,
Zhang
,
Z.
, and
Xu
,
C.
,
2022
, “
Effects of Corona Treatment on Cellular Attachment and Morphology on Polydimethylsiloxane Micropillar Substrates
,”
JOM
,
74
(
9
), pp.
3408
3418
.
17.
Chahal
,
D.
,
Ahmadi
,
A.
, and
Cheung
,
K. C.
,
2012
, “
Improving Piezoelectric Cell Printing Accuracy and Reliability Through Neutral Buoyancy of Suspensions
,”
Biotechnol. Bioeng.
,
109
(
11
), pp.
2932
2940
.
18.
Abelseth
,
E.
,
Abelseth
,
L.
,
De la Vega
,
L.
,
Beyer
,
S. T.
,
Wadsworth
,
S. J.
, and
Willerth
,
S. M.
,
2018
, “
3D Printing of Neural Tissues Derived From Human Induced Pluripotent Stem Cells Using a Fibrin-Based Bioink
,”
ACS Biomater. Sci. Eng.
,
5
(
1
), pp.
234
243
.
19.
Lee
,
H.-R.
,
Park
,
J. A.
,
Kim
,
S.
,
Jo
,
Y.
,
Kang
,
D.
, and
Jung
,
S.
,
2021
, “
3D Microextrusion-Inkjet Hybrid Printing of Structured Human Skin Equivalents
,”
Bioprinting
,
22
, p.
e00143
.
20.
Xu
,
T.
,
Zhao
,
W.
,
Zhu
,
J.-M.
,
Albanna
,
M. Z.
,
Yoo
,
J. J.
, and
Atala
,
A.
,
2013
, “
Complex Heterogeneous Tissue Constructs Containing Multiple Cell Types Prepared by Inkjet Printing Technology
,”
Biomaterials
,
34
(
1
), pp.
130
139
.
21.
Christensen
,
K.
,
Xu
,
C.
,
Chai
,
W.
,
Zhang
,
Z.
,
Fu
,
J.
, and
Huang
,
Y.
,
2015
, “
Freeform Inkjet Printing of Cellular Structures With Bifurcations
,”
Biotechnol. Bioeng.
,
112
(
5
), pp.
1047
1055
.
22.
Parzel
,
C. A.
,
Pepper
,
M. E.
,
Burg
,
T.
,
Groff
,
R. E.
, and
Burg
,
K. J.
,
2009
, “
EDTA Enhances High-Throughput Two-Dimensional Bioprinting by Inhibiting Salt Scaling and Cell Aggregation at the Nozzle Surface
,”
J. Tissue Eng. Regener. Med.
,
3
(
4
), pp.
260
268
.
23.
Hoch
,
E.
,
Hirth
,
T.
,
Tovar
,
G. E.
, and
Borchers
,
K.
,
2013
, “
Chemical Tailoring of Gelatin to Adjust Its Chemical and Physical Properties for Functional Bioprinting
,”
J. Mater. Chem. B
,
1
(
41
), pp.
5675
5685
.
24.
Parsa
,
S.
,
Gupta
,
M.
,
Loizeau
,
F.
, and
Cheung
,
K. C.
,
2010
, “
Effects of Surfactant and Gentle Agitation on Inkjet Dispensing of Living Cells
,”
Biofabrication
,
2
(
2
), p.
025003
.
25.
Dudman
,
J. P.
,
Ferreira
,
A. M.
,
Gentile
,
P.
,
Wang
,
X.
,
Ribeiro
,
R. D. C.
,
Benning
,
M.
, and
Dalgarno
,
K. W.
,
2020
, “
Reliable Inkjet Printing of Chondrocytes and MSCs Using Reservoir Agitation
,”
Biofabrication
,
12
(
4
), p.
045024
.
26.
Liu
,
J.
,
Shahriar
,
M.
,
Xu
,
H.
, and
Xu
,
C.
,
2022
, “
Cell-Laden Bioink Circulation-Assisted Inkjet-Based Bioprinting to Mitigate Cell Sedimentation and Aggregation
,”
Biofabrication
,
14
(
4
), p.
045020
.
27.
Liu
,
J.
,
Xu
,
H.
,
Shahriar
,
M.
, and
Xu
,
C.
,
2023
, “
Modeling of Cell Distribution Dynamics in Cell-Laden Bioink With Active Circulation
,”
Addit. Manuf.
,
73
, p.
103669
.
28.
Saunders
,
R. E.
, and
Derby
,
B.
,
2014
, “
Inkjet Printing Biomaterials for Tissue Engineering: Bioprinting
,”
Int. Mater. Rev.
,
59
(
8
), pp.
430
448
.
29.
Saunders
,
R.
,
Gough
,
J.
, and
Derby
,
B.
,
2010
, “Piezoelectric Inkjet Printing of Cells and Biomaterials,”
Cell and Organ Printing
,
B.
Ringeisen
,
B.
Spargo
,
P.
Wu
, eds.,
Springer
,
Dordrecht, Germany
, pp.
35
50
.
30.
Xu
,
H.
,
Liu
,
J.
,
Zhang
,
Z.
, and
Xu
,
C.
,
2022
, “
Cell Sedimentation During 3D Bioprinting: A Mini Review
,”
Bio-Des. Manuf.
,
5
(
3
), pp.
617
626
.
31.
Zhang
,
Z.
, and
Xie
,
D.
,
2023
, “
A Mesh Insensitive Finite Element Method to Compute Statical Stability Curve of Floating Bodies With Arbitrary Configurations Based on a Force-Oriented Approach
,”
Int. J. Numer. Methods Eng.
,
124
(
7
), pp.
1672
1695
.
32.
Xu
,
H.
,
Casillas
,
J.
, and
Xu
,
C.
,
2019
, “
Effects of Printing Conditions on Cell Distribution Within Microspheres During Inkjet-Based Bioprinting
,”
AIP Adv.
,
9
(
9
), p.
095055
.
33.
McKee
,
C.
, and
Chaudhry
,
G. R.
,
2017
, “
Advances and Challenges in Stem Cell Culture
,”
Colloids Surf., B
,
159
, pp.
62
77
.
34.
Diamantides
,
N.
,
Dugopolski
,
C.
,
Blahut
,
E.
,
Kennedy
,
S.
, and
Bonassar
,
L. J.
,
2019
, “
High Density Cell Seeding Affects the Rheology and Printability of Collagen Bioinks
,”
Biofabrication
,
11
(
4
), p.
045016
.
35.
Xu
,
C.
,
Zhang
,
M.
,
Huang
,
Y.
,
Ogale
,
A.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2014
, “
Study of Droplet Formation Process During Drop-On-Demand Inkjetting of Living Cell-Laden Bioink
,”
Langmuir
,
30
(
30
), pp.
9130
9138
.
36.
Li
,
Z.
,
Segura
,
L. J.
,
Li
,
Y.
,
Zhou
,
C.
, and
Sun
,
H.
,
2023
, “
Multiclass Reinforced Active Learning for Droplet Pinch-Off Behaviors Identification in Inkjet Printing
,”
ASME J. Manuf. Sci. Eng.
,
145
(
7
), p.
071002
.
You do not currently have access to this content.