Abstract

In the realm of additive manufacturing, the selection of process parameters to avoid over and under deposition entails a time-consuming and resource-intensive trial-and-error approach. Given the distinct characteristics of each part geometry, there is a pressing need for advancing real-time process monitoring and control to ensure consistent and reliable part dimensional accuracy. This research shows that support vector regression (SVR) and convolutional neural network (CNN) models offer a promising solution for real-time process control due to the models’ abilities to recognize complex, non-linear patterns with high accuracy. A novel experiment was designed to compare the performance of SVR and CNN models to indirectly detect bead height from a coaxial image of a melt pool from a single-layer, single bead build. The study showed that both SVR and CNN models trained on melt pool data collected from a coaxial optical camera can accurately predict the bead height with a mean absolute percentage error of 3.67% and 3.68%, respectively.

References

1.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
2.
Schmidt
,
M.
,
Merklein
,
M.
,
Bourell
,
D.
,
Dimitrov
,
D.
,
Hausotte
,
T.
,
Wegener
,
K.
,
Overmeyer
,
L.
,
Vollertsen
,
F.
, and
Levy
,
G. N.
,
2017
, “
Laser Based Additive Manufacturing in Industry and Academia
,”
CIRP Ann.
,
66
(
2
), pp.
561
583
.
3.
Kaierle
,
S.
,
Overmeyer
,
L.
,
Alfred
,
I.
,
Rottwinkel
,
B.
,
Hermsdorf
,
J.
,
Wesling
,
V.
, and
Weidlich
,
N.
,
2017
, “
Single-Crystal Turbine Blade Tip Repair by Laser Cladding and Remelting
,”
CIRP J. Manuf. Sci. Technol.
,
19
, pp.
196
199
.
4.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
389
405
.
5.
Bourell
,
D.
,
Kruth
,
J. P.
,
Leu
,
M.
,
Levy
,
G.
,
Rosen
,
D.
,
Beese
,
A. M.
, and
Clare
,
A.
,
2017
, “
Materials for Additive Manufacturing
,”
CIRP Ann.
,
66
(
2
), pp.
659
681
.
6.
Vandone
,
A.
,
Baraldo
,
S.
,
Valente
,
A.
, and
Mazzucato
,
F.
,
2019
, “
Vision-Based Melt Pool Monitoring System Setup for Additive Manufacturing
,”
Procedia CIRP
,
81
, pp.
747
752
.
7.
Boddu
,
M.
,
Landers
,
R.
, and
Liou
,
F.
,
2001
, “
Control of Laser Cladding for Rapid Prototyping—A Review
,”
In Proceedings of the 12th Annual Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
460
467
.
8.
Baraldo
,
S.
,
Vandone
,
A.
,
Valente
,
A.
, and
Carpanzano
,
E.
,
2020
, “
Closed-Loop Control by Laser Power Modulation in Direct Energy Deposition Additive Manufacturing
,”
Proceedings of 5th International Conference on the Industry 4.0 Model for Advanced Manufacturing
,
Belgrade, Serbia
,
June 1–4
,
L.
Wang
,
V. D.
Majstorovic
,
D.
Mourtzis
,
E.
Carpanzano
,
G.
Moroni
, and
L. M.
Galantucci
, eds., Springer International Publishing, Cham, pp.
129
143
.
9.
Song
,
L.
, and
Mazumder
,
J.
,
2011
, “
Feedback Control of Melt Pool Temperature During Laser Cladding Process
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1349
1356
.
10.
Sun
,
Z.
,
Guo
,
W.
, and
Li
,
L.
,
2020
, “
In-Process Measurement of Melt Pool Cross-Sectional Geometry and Grain Orientation in a Laser Directed Energy Deposition Additive Manufacturing Process
,”
Opt. Laser Technol.
,
129
, p.
106280
.
11.
Herman
,
I. P.
,
1996
,
Optical Diagnostics for Thin Film Processing
,
Academic Press
,
San Diego, CA
.
12.
Jiao
,
W.
,
Wang
,
Q.
,
Cheng
,
Y.
, and
Zhang
,
Y.
,
2021
, “
End-to-End Prediction of Weld Penetration: A Deep Learning and Transfer Learning Based Method
,”
J. Manuf. Process.
,
63
, pp.
191
197
.
13.
Donadello
,
S.
,
Motta
,
M.
,
Demir
,
A. G.
, and
Previtali
,
B.
,
2018
, “
Coaxial Laser Triangulation for Height Monitoring in Laser Metal Deposition
,”
Procedia CIRP
,
74
, pp.
144
148
.
14.
Jamnikar
,
N. D.
,
Liu
,
S.
,
Brice
,
C.
, and
Zhang
,
X.
,
2022
, “
In-Process Comprehensive Prediction of Bead Geometry for Laser Wire-Feed DED System Using Molten Pool Sensing Data and Multi-modality CNN
,”
Int. J. Adv. Manuf. Technol.
,
121
(
1–2
), pp.
903
917
.
15.
Kono
,
D.
,
Yamaguchi
,
H.
,
Oda
,
Y.
, and
Sakai
,
T.
,
2020
, “
Stabilization of Standoff Distance by Efficient and Adaptive Updating of Layer Height Command in Directed Energy Deposition
,”
CIRP J. Manuf. Sci. Technol.
,
31
, pp.
244
250
.
16.
Garmendia
,
I.
,
Leunda
,
J.
,
Pujana
,
J.
, and
Lamikiz
,
A.
,
2018
, “
In-Process Height Control During Laser Metal Deposition Based on Structured Light 3D Scanning
,”
Procedia CIRP
,
68
, pp.
375
380
.
17.
Kledwig
,
C.
,
Perfahl
,
H.
,
Reisacher
,
M.
,
Brückner
,
F.
,
Bliedtner
,
J.
, and
Leyens
,
C.
,
2019
, “
Analysis of Melt Pool Characteristics and Process Parameters Using a Coaxial Monitoring System During Directed Energy Deposition in Additive Manufacturing
,”
Materials
,
12
(
2
), p.
308
.
18.
Shim
,
D.-S.
,
Baek
,
G.-Y.
,
Seo
,
J.-S.
,
Shin
,
G.-Y.
,
Kim
,
K.-P.
, and
Lee
,
K.-Y.
,
2016
, “
Effect of Layer Thickness Setting on Deposition Characteristics in Direct Energy Deposition (DED) Process
,”
Opt. Laser Technol.
,
86
, pp.
69
78
.
19.
Li
,
J.
,
Wang
,
Q.
,
Michaleris
,
P. P.
,
Reutzel
,
E. W.
, and
Nassar
,
A. R.
,
2017
, “
An Extended Lumped-Parameter Model of Melt–Pool Geometry to Predict Part Height for Directed Energy Deposition
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091016
.
20.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2013
, “
Height Dependent Laser Metal Deposition Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054501
.
21.
Nikam
,
S. H.
, and
Jain
,
N. K.
,
2018
, “
3D-Finite Element Simulation and Image Processing Based Prediction of Width and Height of Single-Layer Deposition by Micro-plasma-Transferred Arc Process
,”
Int. J. Adv. Manuf. Technol.
,
95
(
9–12
), pp.
3679
3691
.
22.
Donadello
,
S.
,
Furlan
,
V.
,
Demir
,
A. G.
, and
Previtali
,
B.
,
2022
, “
Interplay Between Powder Catchment Efficiency and Layer Height in Self-stabilized Laser Metal Deposition
,”
Opt. Lasers Eng.
,
149
, p.
106817
.
23.
Hofman
,
J.
,
Pathiraj
,
B.
,
van Dijk
,
J.
,
de Lange
,
D.
, and
Meijer
,
J.
,
2012
, “
A Camera Based Feedback Control Strategy for the Laser Cladding Process
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2455
2462
.
24.
Gibson
,
B.
,
Bandari
,
Y.
,
Richardson
,
B.
,
Henry
,
W.
,
Vetland
,
E.
,
Sundermann
,
T.
, and
Love
,
L.
,
2020
, “
Melt Pool Size Control Through Multiple Closed-Loop Modalities in Laser-Wire Directed Energy Deposition of Ti–6Al–4V
,”
Addit. Manuf.
,
32
, p.
100993
.
25.
Fox
,
M. D. T.
,
Hand
,
D. P.
,
Su
,
D.
,
Jones
,
J. D. C.
,
Morgan
,
S. A.
,
McLean
,
M. A.
, and
Steen
,
W. M.
,
1998
, “
Optical Sensor to Monitor and Control Temperature and Build Height of the Laser Direct-Casting Process
,”
Appl. Opt.
,
37
(
36
), pp.
8429
8433
.
26.
Toyserkani
,
E.
, and
Khajepour
,
A.
,
2006
, “
A Mechatronics Approach to Laser Powder Deposition Process
,”
Mechatronics
,
16
(
10
), pp.
631
641
.
27.
Song
,
L.
,
Bagavath-Singh
,
V.
,
Dutta
,
B.
, and
Mazumder
,
J.
,
2012
, “
Control of Melt Pool Temperature and Deposition Height During Direct Metal Deposition Process
,”
Int. J. Adv. Manuf. Technol.
,
58
(
1–4
), pp.
247
256
.
28.
Yeung
,
H.
,
Yang
,
Z.
, and
Yan
,
L.
,
2020
, “
A Meltpool Prediction Based Scan Strategy for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
35
, p.
101383
.
29.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2019
, “
Investigation of Deep Learning for Real-Time Melt Pool Classification in Additive Manufacturing
,”
In 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, BC, Canada
,
Aug. 22–26
, IEEE, pp.
640
647
.
30.
Francis
,
J.
, and
Bian
,
L.
,
2019
, “
Deep Learning for Distortion Prediction in Laser-Based Additive Manufacturing Using Big Data
,”
Manuf. Lett.
,
20
, pp.
10
14
.
31.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2020
, “
From Scan Strategy to Melt Pool Prediction: A Neighboring-Effect Modeling Method
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
051001
.
32.
Zhang
,
Y.
,
Hong
,
G. S.
,
Ye
,
D.
,
Zhu
,
K.
, and
Fuh
,
J. Y.
,
2018
, “
Extraction and Evaluation of Melt Pool, Plume and Spatter Information for Powder-Bed Fusion AM Process Monitoring
,”
Mater. Des.
,
156
, pp.
458
469
.
33.
Jamnikar
,
N.
,
Liu
,
S.
,
Brice
,
C.
, and
Zhang
,
X.
,
2021
, “
Machine Learning Based In Situ Quality Estimation by Molten Pool Condition-Quality Relations Modeling Using Experimental Data
,”
Int. J. Adv. Manuf. Technol.
,
121
(
1
), pp.
903
917
.
34.
Caiazzo
,
F.
, and
Caggiano
,
A.
,
2018
, “
Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction Via Machine Learning
,”
Materials
,
11
(
3
), p.
444
.
35.
Qi
,
X.
,
Chen
,
G.
,
Li
,
Y.
,
Cheng
,
X.
, and
Li
,
C.
,
2019
, “
Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives
,”
Engineering
,
5
(
4
), pp.
721
729
.
36.
Ocylok
,
S.
,
Alexeev
,
E.
,
Mann
,
S.
,
Weisheit
,
A.
,
Wissenbach
,
K.
, and
Kelbassa
,
I.
,
2014
, “
Correlations of Melt Pool Geometry and Process Parameters During Laser Metal Deposition by Coaxial Process Monitoring
,”
Phys. Procedia
,
56
, pp.
228
238
.
37.
Wang
,
Z. J.
,
Turko
,
R.
,
Shaikh
,
O.
,
Park
,
H.
,
Das
,
N.
,
Hohman
,
F.
,
Kahng
,
M.
, and
Polo Chau
,
D. H.
,
2021
, “
CNN Explainer: Learning Convolutional Neural Networks With Interactive Visualization
,”
IEEE Trans. Vis. Comput. Graph.
,
27
(
2
), pp.
1396
1406
.
38.
Chang
,
C.-C.
, and
Lin
,
C.-J.
,
2011
, “
LIBSVM: A Library for Support Vector Machines
,”
ACM Trans. Intell. Syst. Technol.
,
2
(
3
), pp.
1
27
.
39.
Panigrahi
,
S.
, and
Mantri
,
J. K.
,
2015
, “
Epsilon-SVR and Decision Tree for Stock Market Forecasting
,”
In 2015 International Conference on Green Computing and Internet of Things (ICGCIoT)
,
Greater Noida, Delhi, India
,
Oct. 8–10
, pp.
761
766
.
40.
Wong
,
T.-T.
, and
Yeh
,
P.-Y.
,
2020
, “
Reliable Accuracy Estimates From k-Fold Cross Validation
,”
IEEE Trans. Knowl. Data Eng.
,
32
(
8
), pp.
1586
1594
.
41.
Nembrini
,
S.
,
König
,
I. R.
, and
Wright
,
M. N.
,
2018
, “
The Revival of the Gini Importance?
,”
Bioinformatics
,
34
(
21
), pp.
3711
3718
.
42.
Duval
,
A.
,
2019
, “
Explainable Artificial Intelligence (XAI)
,”
MA4K9 Scholarly Report University of Warwick
, pp.
1
53
.
You do not currently have access to this content.