Abstract

Cloud manufacturing is a service-oriented networked manufacturing model that aims to provide manufacturing resources as services in an on-demand manner. Scheduling is one of the key techniques for cloud manufacturing to achieve the aim. Multi-task scheduling with dynamical task arrivals is a critical problem in cloud manufacturing. Many traditional algorithms such as the genetic algorithm (GA) and ant colony optimization algorithm (ACO) have been used to address the issue, which, however, either are incapable of or perform poorly in tackling the problem. Deep reinforcement learning (DRL) as the combination of deep learning (DL) and reinforcement learning (RL) provides an effective technique in this regard. In view of this, we employ a typical DRL algorithm—Deep Q-network (DQN)—and propose a DQN-based approach for multitask scheduling in cloud manufacturing. Three different task arrival modes—arriving at the same time, arriving in random batches, and arriving one by one sequentially—are considered. Four baseline methods including random scheduling, round-robin scheduling, earliest scheduling, and minimum execution time (min-time) scheduling are investigated. A comparison of results indicates that the DQN-based scheduling approach is effective and performs best among all approaches in addressing the multitask scheduling problem in cloud manufacturing.

References

1.
Zhang
,
L.
,
Luo
,
Y.
,
Tao
,
F.
,
Li
,
B. H.
,
Ren
,
L.
,
Zhang
,
X.
,
Guo
,
H.
,
Cheng
,
Y.
,
Hu
,
A.
, and
Liu
,
Y.
,
2012
, “
Cloud Manufacturing: A New Manufacturing Paradigm
,”
Enterp. Inf. Syst.
,
8
(
2
), pp.
167
187
.
2.
Liu
,
Y. K.
,
Wang
,
L.
,
Wang
,
X. V.
, and
Xu
,
X.
,
2018
, “
A Revisit to Cloud Manufacturing
,”
Chin. Mech. Eng.
,
29
(
18
), pp.
2226
2237
.
3.
Gonzalez
,
T. F.
,
2007
,
Handbook of Approximation Algorithms and Metaheuristics
,
CRC Press
,
New York
, Chap.
21
.
4.
Kaelbling
,
L. P.
,
Littman
,
M. L.
, and
Moore
,
A. W.
,
1996
, “
Reinforcement Learning: A Survey
,”
J. Artif. Intell. Res.
,
4
, pp.
237
285
.
5.
Mnih
,
V.
,
Badia
,
A. P.
,
Mirza
,
M.
,
Graves
,
A.
,
Lillicrap
,
T.
,
Harley
,
T.
, and
Kavukcuoglu
,
K.
,
2016
, “
Asynchronous Methods for Deep Reinforcement Learning
,”
Proceedings of the 33rd International Conference on Machine Learning
,
New York
,
June 20–22
,
M. F.
Balcan
, and
K. Q.
Weinberger
, eds., Vol. 48, pp.
1928
1937
.
6.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Rusu
,
A. A.
,
Veness
,
J.
,
Bellemare
,
M. G.
,
Graves
,
A.
, et al
,
2015
, “
Human-Level Control Through Deep Reinforcement Learning
,”
Nature
,
518
(
7540
), pp.
529
533
.
7.
Zhan
,
W.
,
Luo
,
C.
,
Wang
,
J.
,
Wang
,
C.
,
Min
,
G.
,
Duan
,
H.
, and
Zhu
,
Q.
,
2020
, “
Deep-Reinforcement-Learning-Based Offloading Scheduling for Vehicular Edge Computing
,”
IEEE Internet Things J.
,
7
(
6
), pp.
5449
5465
.
8.
Peng
,
Z.
,
Cui
,
D.
,
Zuo
,
J.
,
Li
,
Q.
,
Xu
,
B.
, and
Lin
,
W.
,
2015
, “
Random Task Scheduling Scheme Based on Reinforcement Learning in Cloud Computing
,”
Clust. Comput.
,
18
(
4
), pp.
1595
1607
.
9.
Liu
,
Y. K.
,
Wang
,
L.
,
Wang
,
X. V.
,
Xu
,
X.
, and
Jiang
,
P.
,
2019
, “
Cloud Manufacturing: Key Issues and Future Perspectives
,”
Int. J. Comput. Integr. Manuf.
,
32
(
9
), pp.
858
874
.
10.
Peng
,
Z.
,
Lin
,
J.
,
Cui
,
D.
,
Li
,
Q.
, and
He
,
J.
,
2020
, “
A Multi-Objective Trade-Off Framework for Cloud Resource Scheduling Based on the Deep Q-Network Algorithm
,”
Clust. Comput.
,
23
(
4
), pp.
2753
2767
.
11.
Tong
,
Z.
,
Chen
,
H.
,
Deng
,
X.
,
Li
,
K.
, and
Li
,
K.
,
2020
, “
A Scheduling Scheme in the Cloud Computing Environment Using Deep Q-Learning
,”
Inf. Sci
,
512
, pp.
1170
1191
.
12.
Xu
,
X.
,
2012
, “
From Cloud Computing to Cloud Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
28
(
1
), pp.
75
86
.
13.
Liu
,
Y. K.
,
Zhang
,
L.
,
Wang
,
L. H.
,
Xiao
,
Y. Y.
,
Xu
,
X.
, and
Wang
,
M.
,
2019
, “
A Framework for Scheduling in Cloud Manufacturing with Deep Reinforcement Learning
,”
Proceedings of the 17th International Conference on Industrial Informatics
,
Helsinki, Finland
,
July 22–25
, IEEE, Vol. 1, pp.
1775
1780
.
14.
Swarup
,
S.
,
Shakshuki
,
E. M.
, and
Yasar
,
A.
,
2021
, “
Task Scheduling in Cloud Using Deep Reinforcement Learning
,”
Procedia Comput. Sci.
,
184
, pp.
42
51
.
15.
Cheng
,
M.
,
Li
,
J.
, and
Nazarian
,
S.
,
2018
, “
DRL-Cloud: Deep Reinforcement Learning-Based Resource Provisioning and Task Scheduling for Cloud Service Providers
,”
Proceedings of the 23rd Asia and South Pacific Design Automation Conference
,
Jeju, South Korea
,
Jan. 22–25
, IEEE, pp.
129
134
.
16.
Rjoub
,
G.
,
Bentahar
,
J.
,
Abdel Wahab
,
O.
, and
Saleh Bataineh
,
A.
,
2021
, “
Deep and Reinforcement Learning for Automated Task Scheduling in Large-Scale Cloud Computing Systems
,”
Concurr. Comput Pract. Exp.
,
33
(
23
), p.
e5919
.
17.
Van Hasselt
,
H.
,
Guez
,
A.
, and
Silver
,
D.
,
2016
, “
Deep Reinforcement Learning with Double q-Learning
,”
Proceedings of the 30th AAAI Conference on Artificial Intelligence
,
Phoenix, AZ
,
Mar. 2
, pp.
2094
2100
.
18.
Dong
,
T.
,
Xue
,
F.
,
Xiao
,
C.
, and
Zhang
,
J.
,
2021
, “
Workflow Scheduling Based on Deep Reinforcement Learning in the Cloud Environment
,”
J. Ambient Intell. Humniz. Comput.
,
12
(
12
), pp.
10823
10835
.
19.
Karthiban
,
K.
, and
Raj
,
J. S.
,
2020
, “
An Efficient Green Computing Fair Resource Allocation in Cloud Computing Using Modified Deep Reinforcement Learning Algorithm
,”
Soft Comput.
,
24
(
19
), pp.
14933
14942
.
20.
Liu
,
Y. K.
,
Wang
,
L.
,
Wang
,
X. V.
,
Xu
,
X.
, and
Zhang
,
L.
,
2019
, “
Scheduling in Cloud Manufacturing: State-of-the-Art and Research Challenges
,”
Int. J. Prod. Res.
,
57
(
15–16
), pp.
4854
4879
.
21.
Liu
,
Y. K.
,
Xu
,
X.
,
Zhang
,
L.
, and
Tao
,
F.
,
2016
, “
An Extensible Model for Multitask-Oriented Service Composition and Scheduling in Cloud Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
4
), p.
041009
.
22.
Liu
,
Y. K.
,
Xu
,
X.
,
Zhang
,
L.
,
Wang
,
L.
, and
Zhong
,
R. Y.
,
2017
, “
Workload-Based Multi-Task Scheduling in Cloud Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
45
, pp.
3
20
.
23.
Li
,
F.
,
Zhang
,
L.
, and
Laili
,
Y.
,
2017
, “
Multi-Task Scheduling Based on QoS Evaluation in Cloud Manufacturing System
,”
Proceedings of the 12th International Manufacturing Science and Engineering Conference Collocated With the JSME/ASME 2017 6th International Conference on Materials and Processing
,
Los Angeles, CA
,
June 4–8
, pp.
1
11
.
24.
Li
,
F.
,
Zhang
,
L.
,
Liao
,
T. W.
, and
Liu
,
Y.
,
2019
, “
Multi-Objective Optimisation of Multi-Task Scheduling in Cloud Manufacturing
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3847
3863
.
25.
Li
,
F.
,
Liao
,
T. W.
, and
Zhang
,
L.
,
2019
, “
Two-Level Multi-Task Scheduling in a Cloud Manufacturing Environment
,”
Rob. Comput. Integr. Manuf.
,
56
, pp.
127
139
.
26.
Liu
,
Y. K.
,
Zhang
,
X. S.
,
Zhang
,
L.
,
Tao
,
F.
, and
Wang
,
L. H.
,
2019
, “
A Multi-Agent Architecture for Scheduling in Platform-Based Smart Manufacturing Systems
,”
Front. Inf. Technol. Electron. Eng.
,
20
(
11
), pp.
1465
1492
.
27.
Zhou
,
L.
,
Zhang
,
L.
,
2016
, “A Dynamic Task Scheduling Method Based on Simulation in Cloud Manufacturing,”
Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems, Communications in Computer and Information Science
,
L.
Zhang
,
X.
Song
, and
Y.
Wu
, eds.,
Springer
,
Singapore
, Vol.
645
, pp.
20
24
.
28.
Zhou
,
L.
,
Zhang
,
L.
, and
Ren
,
L.
,
2018
, “
Modelling and Simulation of Logistics Service Selection in Cloud Manufacturing
,”
Procedia CIRP
,
72
, pp.
916
921
.
29.
Zhou
,
L.
,
Zhang
,
L.
, and
Ren
,
L.
,
2018
, “
Simulation of Production Modes for Cloud Manufacturing Enterprises
,”
Proceedings of the 4th International Conference on Universal Village
,
Boston, MA
,
Oct. 21–24
, IEEE, pp.
1
5
.
30.
Zhou
,
L.
,
Zhang
,
L.
, and
Ren
,
L.
,
2018
, “
Simulation Model of Dynamic Service Scheduling in Cloud Manufacturing
,”
Proceedings of the 44th Annual Conference of the IEEE Industrial Electronics Society
,
Washington, DC
,
Oct. 21–23
, IEEE, pp.
4199
4204
.
31.
Zhang
,
W.
,
Xiao
,
J.
,
Zhang
,
S.
,
Lin
,
J.
, and
Feng
,
R.
,
2021
, “
A Utility-Aware Multi-Task Scheduling Method in Cloud Manufacturing Using Extended NSGA-II Embedded With Game Theory
,”
Int. J. Comput. Integr. Manuf.
,
34
(
2
), pp.
175
194
.
32.
Ding
,
J.
,
Wang
,
Y.
,
Zhang
,
S.
,
Zhang
,
W.
, and
Xiong
,
Z.
,
2019
, “
Robust and Stable Multi-Task Manufacturing Scheduling With Uncertainties Using a Two-Stage Extended Genetic Algorithm
,”
Enterp. Inf. Syst.
,
13
(
10
), pp.
1442
1470
.
33.
Zhou
,
L.
,
Zhang
,
L.
,
Ren
,
L.
, and
Wang
,
J.
,
2019
, “
Real-Time Scheduling of Cloud Manufacturing Services Based on Dynamic Data-Driven Simulation
,”
IEEE Trans. Ind. Inf.
,
15
(
9
), pp.
5042
5051
.
34.
Akbaripour
,
H.
,
Houshmand
,
M.
,
Van Woensel
,
T.
, and
Mutlu
,
N.
,
2018
, “
Cloud Manufacturing Service Selection Optimization and Scheduling With Transportation Considerations: Mixed-Integer Programming Models
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1
), pp.
43
70
.
35.
Hu
,
Y.
,
Zhu
,
F.
,
Zhang
,
L.
,
Lui
,
Y.
, and
Wang
,
Z.
,
2019
, “
Scheduling of Manufacturers Based on Chaos Optimization Algorithm in Cloud Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
58
, pp.
13
20
.
36.
Cao
,
Y.
,
Wang
,
S.
,
Kang
,
L.
, and
Gao
,
Y.
,
2016
, “
A TQCS-Based Service Selection and Scheduling Strategy in Cloud Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
82
(
1
), pp.
235
251
.
37.
Zhou
,
L.
,
Zhang
,
L.
, and
Fang
,
Y.
,
2020
, “
Logistics Service Scheduling with Manufacturing Provider Selection in Cloud Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
65
, p.
101914
.
38.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
39.
Arulkumaran
,
K.
,
Deisenroth
,
M. P.
,
Brundage
,
M.
, and
Bharath
,
A. A.
,
2017
, “
Deep Reinforcement Learning: A Brief Survey
,”
IEEE Signal Process. Mag.
,
34
(
6
), pp.
26
38
.
40.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Graves
,
A.
,
Antonoglou
,
I.
,
Wierstra
,
D.
, and
Riedmiller
,
M.
,
2013
, “
Playing Atari with Deep Reinforcement Learning
,”
arXiv preprint
.
41.
Wang
,
Z.
,
Schaul
,
T.
,
Hessel
,
M.
,
Hasselt
,
H.
,
Lanctot
,
M.
, and
Freitas
,
N.
,
2016
, “
Dueling Network Architectures for Deep Reinforcement Learning
,”
Proceedings of the 33rd International Conference on Machine Learning
,
M. F. Balcan, and K. Q. Weinberger, eds. New York, June 20–22, Vol. 48, pp. 1995–2003
.
42.
Anschel
,
O.
,
Baram
,
N.
, and
Shimkin
,
N.
,
2017
, “
Averaged-dqn: Variance Reduction and Stabilization for Deep Reinforcement Learning
,”
Proceedings of the 34th International Conference on Machine Learning
,
Sydney, Australia
,
Aug. 6–11
.
43.
Schaul
,
T.
,
Quan
,
J.
,
Antonoglou
,
I.
, and
Silver
,
D.
,
2015
, “
Prioritized Experience Replay
,”
arXiv preprint
.
44.
Lillicrap
,
T. P.
,
Hunt
,
J. J.
,
Pritzel
,
A.
,
Heess
,
N.
,
Erez
,
T.
,
Tassa
,
Y.
, and
Wierstra
,
D.
,
2015
, “
Continuous Control With Deep Reinforcement Learning
,”
arXiv preprint
.
45.
Liang
,
H.
,
Wen
,
X.
,
Liu
,
Y.
,
Zhang
,
H.
,
Zhang
,
L.
, and
Wang
,
L.
,
2021
, “
Logistics-Involved QoS-Aware Service Composition in Cloud Manufacturing With Deep Reinforcement Learning
,”
Rob. Comput. Integr. Manuf.
,
67
, p.
101991
.
46.
Dong
,
T.
,
Xue
,
F.
,
Xiao
,
C.
, and
Li
,
J.
,
2020
, “
Task Scheduling Based on Deep Reinforcement Learning in a Cloud Manufacturing Environment
,”
Concurr. Comput. Pract. Exp.
,
32
(
11
), p.
e5654
.
47.
Zhou
,
L.
,
Zhang
,
L.
, and
Horn
,
B. K.
,
2020
, “
Deep Reinforcement Learning-Based Dynamic Scheduling in Smart Manufacturing
,”
Procedia CIRP
,
93
, pp.
383
388
.
48.
Yang
,
S.
, and
Xu
,
Z.
,
2021
, “
Intelligent Scheduling and Reconfiguration via Deep Reinforcement Learning in Smart Manufacturing
,”
Int. J. Prod. Res.
,
60
(
16
), pp.
4936
4953
.
49.
Zhang
,
L.
,
Yang
,
C.
,
Yan
,
Y.
, and
Hu
,
Y.
,
2022
, “
Distributed Real-Time Scheduling in Cloud Manufacturing by Deep Reinforcement Learning
,”
IEEE Trans. Ind. Inf
,
18
(
12
)
8999
9007.
50.
Liu
,
Y.
,
Ping
,
Y.
,
Zhang
,
L.
,
Wang
,
L.
, and
Xu
,
X.
,
2023
, “
Scheduling of Decentralized Robot Services in Cloud Manufacturing With Deep Reinforcement Learning
,”
Rob. Comput. Integr. Manuf.
,
80
, p.
102454
.
51.
Ping
,
Y.
,
Liu
,
Y.
,
Zhang
,
L.
,
Wang
,
L.
, and
Xu
,
X.
,
2023
, “
Sequence Generation for Multi-Task Scheduling in Cloud Manufacturing With Deep Reinforcement Learning
,”
J. Manuf. Syst.
,
67
, pp.
315
337
.
52.
Wang
,
X.
,
Zhang
,
L.
,
Liu
,
Y.
,
Zhao
,
C.
, and
Wang
,
K.
,
2022
, “
Solving Task Scheduling Problems in Cloud Manufacturing via Attention Mechanism and Deep Reinforcement Learning
,”
J. Manuf. Syst.
,
65
, pp.
452
468
.
53.
Chen
,
Z.
,
Zhang
,
L.
,
Wang
,
X.
, and
Wang
,
K.
,
2023
, “
Cloud-Edge Collaboration Task Scheduling in Cloud Manufacturing: An Attention-Based Deep Reinforcement Learning Approach
,”
Comput. Ind. Eng.
,
177
,
109053
.
You do not currently have access to this content.