Abstract

Nickel-based superalloys (Ni-alloys) are widely used in flight critical aeroengine components because of their excellent material properties at high temperatures such as yield strength, ductility, and creep resistance. However, these desirable high-temperature properties also make Ni-alloys very difficult to machine. This paper provides an overview and benchmarking of various constitutive models to provide the process modeling community with an objective comparison between various calibrated material models to increase the accuracy of process model predictions for machining of Ni-alloys. Various studies involving the Johnson–Cook model and the calibration of its constants in finite element simulations are discussed. It was found that significant discrepancies exist between researchers’ approaches to calibrating constitutive models. To this end, various “physics-based” models are discussed as an alternative to widely used “phenomenological” models like the Johnson–Cook model, supplemented by a discussion on the more precise inverse method for constitutive model calibration. This paper also provides a comprehensive overview of pedigreed physical material properties for a range of Ni-alloys—the variation of thermal properties and thermally induced stresses over machining temperature regimes are modeled for a variety of Ni-alloys. The chemical compositions and applications for a range of relevant Ni-alloys are also explored. Overall, this paper identifies the need for more comprehensive analysis and process-specific (e.g., in-situ) characterization of thermomechanical properties for difficult-to-machine Ni-alloys to improve machining performance and aeroengine component quality.

References

1.
Furrer
,
D.
, and
Fecht
,
H.
,
1999
, “
Ni-Based Superalloys for Turbine Discs
,”
J. Miner. Met. Mater. Soc.
,
51
(
1
), pp.
14
17
.
2.
Kuo
,
C.-M.
,
Yang
,
Y.-T.
,
Bor
,
H.-Y.
,
Wei
,
C.-N.
, and
Tai
,
C.-C.
,
2009
, “
Aging Effects on the Microstructure and Creep Behavior of Inconel 718 Superalloy
,”
Mater. Sci. Eng. A
,
510–511
(
1
), pp.
289
294
.
3.
Nowotnik
,
A.
,
2016
, “
Nickel-Based Superalloys
.”
4.
Mignanelli
,
P. M.
,
Jones
,
N. G.
,
Pickering
,
E. J.
,
Messé
,
O. M. D. M.
,
Rae
,
C. M. F.
,
Hardy
,
M. C.
, and
Stone
,
H. J.
,
2017
, “
Gamma-Gamma Prime-Gamma Double Prime Dual-Superlattice Superalloys
,”
Scr. Mater.
,
136
(
1
), pp.
136
140
.
5.
Czyrska-Filemonowicz
,
A.
,
Dubiel
,
B.
,
Zietara
,
M.
, and
Cetel
,
A.
,
2007
, “
Development of Single Crystal Ni-Based Superalloys for Advanced Aircraft Turbine Blades
,”
Mater. Eng.
,
28
(
3–4
), pp.
128
133
.
6.
Wang
,
J.
,
Guo
,
W.-G.
,
Su
,
Y.
,
Zhou
,
P.
, and
Yuan
,
K.
,
2016
, “
Anomalous Behaviors of a Single-Crystal Nickel-Base Superalloy Over a Wide Range of Temperatures and Strain Rates
,”
Mech. Mater.
,
94
(
1
), pp.
79
90
.
7.
Lin
,
P.-H.
,
Tobushi
,
H.
,
Tanaka
,
K.
,
Hattori
,
T.
, and
Ikai
,
A.
,
1996
, “
Influence of Strain Rate on Deformation Properties of TiNi Shape Memory Alloy
,”
JSME Int J. Ser. A
,
39
(
1
), pp.
117
123
.
8.
Knipling
,
K. E.
,
Dunand
,
D. C.
, and
Seidman
,
D. N.
,
2006
, “
Criteria for Developing Castable, Creep-Resistant Aluminum-Based Alloys—A Review
,”
Int. J. Mater. Res.
,
97
(
3
), pp.
246
265
.
9.
Shang
,
S. L.
,
Zacherl
,
C. L.
,
Fang
,
H. Z.
,
Wang
,
Y.
,
Du
,
Y.
, and
Liu
,
Z. K.
,
2012
, “
Effects of Alloying Element and Temperature on the Stacking Fault Energies of Dilute Ni-Base Superalloys
,”
J. Phys.: Condens. Matter
,
24
(
50
), p.
505403
.
10.
Sims
,
C. T.
,
Stoloff
,
N. S.
, and
Hagel
,
W. C.
,
1987
,
Superalloys II
,
John Wiley & Sons, Inc.
,
Toronto
.
11.
Thakur
,
A.
, and
Gangopadhyay
,
S.
,
2016
, “
State-of-the-Art in Surface Integrity in Machining of Nickel-Based Super Alloys
,”
Int. J. Mach. Tools Manuf.
,
100
(
1
), pp.
25
54
.
12.
Ranganath
,
S.
,
Guo
,
C.
, and
Hegde
,
P.
,
2009
, “
A Finite Element Modeling Approach to Predicting White Layer Formation in Nickel Superalloys
,”
CIRP Ann.
,
58
(
1
), pp.
77
80
.
13.
Ulutan
,
D.
, and
Özel
,
T.
,
2013
, “
Multiobjective Optimization of Experimental and Simulated Residual Stresses in Turning of Nickel-Alloy IN100
,”
Mater. Manuf. Process.
,
28
(
7
), pp.
835
841
.
14.
Sharman
,
A. R. C.
,
Hughes
,
J. I.
, and
Ridgway
,
K.
,
2004
, “
Workpiece Surface Integrity and Tool Life Issues When Turning Inconel 718 Nickel Based Superalloy
,”
Mach. Sci. Technol.
,
8
(
3
), pp.
399
414
.
15.
Ezugwu
,
E.
,
Wang
,
Z.
, and
Okeke
,
C.
,
1999
, “
Tool Life and Surface Integrity When Machining Inconel 718 With PVD- and CVD-Coated Tools
,”
Tribol. Trans.
,
42
(
2
), pp.
353
360
.
16.
Axinte
,
D. A.
, and
Chiffre
,
L. D.
,
2008
, “
Effectiveness and Resolution of Tests for Evaluating the Performance of Cutting Fluids in Machining Aerospace Alloys
,”
CIRP Ann.
,
57
(
1
), pp.
129
132
.
17.
Ulutan
,
D.
,
Arisoy
,
Y. M.
,
Özel
,
T.
, and
Mears
,
L.
,
2014
, “
Empirical Modeling of Residual Stress Profile in Machining Nickel-Based Superalloys Using the Sinusoidal Decay Function
,”
Procedia CIRP
,
13
(
1
), pp.
365
370
.
18.
Fan
,
Y.
,
Hao
,
Z.
,
Zheng
,
M.
,
Sun
,
F.
, and
Yang
,
S.
,
2013
, “
Study of Surface Quality in Machining Nickel-Based Alloy Inconel 718
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9
), pp.
2659
2667
.
19.
Umbrello
,
D.
,
2013
, “
Investigation of Surface Integrity in Dry Machining of Inconel 718
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9
), pp.
2183
2190
.
20.
Pawade
,
R.
,
Joshi
,
S. S.
, and
Brahmankar
,
P.
,
2008
, “
Effect of Machining Parameters and Cutting Edge Geometry on Surface Integrity of High-Speed Turned Inconel 718
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
15
28
.
21.
Shokrani
,
A.
,
Dhokia
,
V.
,
Newman
,
S. T.
, and
Imani-Asrai
,
R.
,
2012
, “
An Initial Study of the Effect of Using Liquid Nitrogen Coolant on the Surface Roughness of Inconel 718 Nickel-Based Alloy in CNC Milling
,”
Procedia CIRP
,
3
(
1
), pp.
121
125
.
22.
Aramcharoen
,
A.
, and
Chuan
,
S. K.
,
2014
, “
An Experimental Investigation on Cryogenic Milling of Inconel 718 and Its Sustainability Assessment
,”
Procedia CIRP
,
14
(
1
), pp.
529
534
.
23.
Yildiz
,
Y.
, and
Nalbant
,
M.
,
2008
, “
A Review of Cryogenic Cooling in Machining Processes
,”
Int. J. Mach. Tools Manuf.
,
48
(
9
), pp.
947
964
.
24.
Aspinwall
,
D. K.
,
Dewes
,
R. C.
,
Ng
,
E.-G.
,
Sage
,
C.
, and
Soo
,
S. L.
,
2007
, “
The Influence of Cutter Orientation and Workpiece Angle on Machinability When High-Speed Milling Inconel 718 Under Finishing Conditions
,”
Int. J. Mach. Tools Manuf.
,
47
(
12–13
), pp.
1839
1846
.
25.
Rahim
,
E. A.
, and
Sasahara
,
H.
,
2011
, “
An Analysis of Surface Integrity When Drilling Inconel 718 Using Palm Oil and Synthetic Ester Under MQL Condition
,”
Mach. Sci. Technol.
,
15
(
1
), pp.
76
90
.
26.
Farid
,
A. A.
,
Sharif
,
S.
, and
Namazi
,
H.
,
2009
, “
Effect of Machining Parameters and Cutting Edge Geometry on Surface Integrity When Drilling and Hole Making in Inconel 718
,”
SAE Int. J. Mater. Manuf.
,
2
(
1
), pp.
564
569
.
27.
M’Saoubi
,
R.
,
Axinte
,
D.
,
Herbert
,
C.
,
Hardy
,
M.
, and
Salmon
,
P.
,
2014
, “
Surface Integrity of Nickel-Based Alloys Subjected to Severe Plastic Deformation by Abusive Drilling
,”
CIRP Ann.
,
63
(
1
), pp.
61
64
.
28.
Madariaga
,
A.
,
Esnaola
,
J. A.
,
Fernandez
,
E.
,
Arrazola
,
P. J.
,
Garay
,
A.
, and
Morel
,
F.
,
2014
, “
Analysis of Residual Stress and Work-Hardened Profiles on Inconel 718 When Face Turning With Large-Nose Radius Tools
,”
Int. J. Adv. Manuf. Technol.
,
71
(
9
), pp.
1587
1598
.
29.
Kortabarri
,
A.
,
Madariag
,
A.
,
Fernandez
,
E.
,
Esnaol
,
J. A.
, and
Arrazola
,
P. J.
,
2011
, “
A Comparative Study of Residual Stress Profiles on Inconel 718 Induced by Dry Face Turning
,”
Procedia CIRP
,
19
(
1
), pp.
228
234
.
30.
Chen
,
Z.
,
2014
,
Surface Integrity of Broached Inconel 718 and Influence of Thermal Exposure
,
Linköping University
,
Linköping
.
31.
Klocke
,
F.
,
Vogtel
,
P.
,
Gierlings
,
S.
,
Lung
,
D.
, and
Veselovac
,
D.
,
2013
, “
Broaching of Inconel 718 With Cemented Carbide
,”
Prod. Eng.
,
7
(
6
), pp.
593
600
.
32.
Lee
,
S.-M.
,
Chow
,
H.-M.
, and
Yan
,
B.-H.
,
2007
, “
Friction Drilling of IN-713LC Cast Superalloy
,”
Mater. Manuf. Process.
,
22
(
7–8
), pp.
893
897
.
33.
Thakur
,
A.
,
Gangopadhyay
,
S.
, and
Maity
,
K. P.
,
2014
, “
Effect of Cutting Speed and CVD Multilayer Coating on Machinability of Inconel 825
,”
Surf. Eng.
,
30
(
7
), pp.
516
523
.
34.
Joshi
,
S. V.
,
Vizhian
,
S. P.
,
Sridhar
,
B. R.
, and
Jayaram
,
K.
,
2008
, “
Parametric Study of Machining Effect on Residual Stress and Surface Roughness of Nickel Base Super Alloy UDIMET 720
,”
Adv. Mater. Res.
,
47–50
(
1
), pp.
13
16
. www.scientific.net/AMR.47-50.13
35.
Jin
,
D.
,
Liu
,
Z.
,
Yi
,
W.
, and
Su
,
G.
,
2011
, “
Influence of Cutting Speed on Surface Integrity for Powder Metallurgy Nickel-Based Superalloy FGH95
,”
Int. J. Adv. Manuf. Technol.
,
56
(
5–8
), pp.
553
559
.
36.
Veldhuis
,
S. C.
,
Dosbaeva
,
G. K.
,
Elfizy
,
A.
,
Fox-Rabinovich
,
G. S.
, and
Wagg
,
T.
,
2010
, “
Investigations of White Layer Formation During Machining of Powder Metallurgical Ni-Based ME 16 Superalloy
,”
J. Mater. Eng. Perform.
,
19
(
7
), pp.
1031
1036
.
37.
Axinte
,
D. A.
,
Andrews
,
P.
,
Li
,
W.
,
Gindy
,
N.
,
Withers
,
P. J.
, and
Childs
,
T. H. C.
,
2006
, “
Turning of Advanced Ni Based Alloys Obtained Via Powder Metallurgy Route
,”
CIRP Ann.
,
55
(
1
), pp.
117
120
.
38.
Marinescu
,
I.
, and
Axinte
,
D. A.
,
2011
, “
An Automated Monitoring Solution for Avoiding an Increased Number of Surface Anomalies During Milling of Aerospace Alloys
,”
Int. J. Mach. Tools Manuf.
,
51
(
4
), pp.
349
357
.
39.
Soo
,
S. L.
,
Hood
,
R.
,
Aspinwall
,
D. K.
,
Voice
,
W. E.
, and
Sage
,
C.
,
2011
, “
Machinability and Surface Integrity of RR1000 Nickel Based Superalloy
,”
CIRP Ann.
,
60
(
1
), pp.
89
92
.
40.
Herbert
,
C. R. J.
,
Axinte
,
D. A.
,
Hardy
,
M. C.
, and
Brown
,
P. D.
,
2011
, “
Investigation Into the Characteristics of White Layers Produced in a Nickel-Based Superalloy From Drilling Operations
,”
Procedia Eng.
,
19
(
1
), pp.
138
143
.
41.
Shi
,
D.
,
Axinte
,
D. A.
, and
Gindy
,
N. N.
,
2007
, “
Development of an Online Machining Process Monitoring System: A Case Study of the Broaching Process
,”
Int. J. Adv. Manuf. Technol.
,
34
(
1–2
), pp.
34
46
.
42.
Axinte
,
D. A.
, and
Andrews
,
P.
,
2007
, “
Some Considerations on Tool Wear and Workpiece Surface Quality of Holes Finished by Reaming or Milling in a Nickel Base Superalloy
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
221
(
4
), pp.
591
603
.
43.
Zou
,
B.
,
Chen
,
M.
,
Huang
,
C.
, and
An
,
Q.
,
2009
, “
Study on Surface Damages Caused by Turning NiCr20TiAl Nickel-Based Alloy
,”
J. Mater. Process. Technol.
,
209
(
17
), pp.
5802
5809
.
44.
Wright
,
P. K.
, and
Chow
,
J. G.
,
1982
, “
Deformation Characteristics of Nickel Alloys During Machining
,”
ASME J. Eng. Mater. Technol.
,
104
(
2
), pp.
85
93
.
45.
Podder
,
B.
, and
Paul
,
S.
,
2012
, “
Improvement of Machinability in End Milling of Nimonic C-263 by Application of High Pressure Coolant
,”
Int. J. Mach. Mach. Mater.
,
11
(
4
), pp.
418
433
.
46.
Ezilarasan
,
C.
, and
Kumar
,
V. S. S.
,
2012
, “
The Effect of the Machining Parameters on the Micro Hardness and Residual Stresses in the Turning of Nimonic C-263 Alloy
,”
Int. Rev. Mech. Eng.
,
6
(
3
).
47.
Razak
,
N. H.
,
Rahman
,
M. M.
, and
Kadirgama
,
K.
,
2011
, “
Response Surface Design Model to Predict Surface Roughness When Machining Hastelloy C2000 Using Uncoated Carbide Insert
,”
1st International Conference on Mechanical Engineering Research
,
Kuantan, Pahang, Malaysia
,
Dec. 5–7
, Vol. 36, p.
012022
.
48.
Hood
,
R.
,
Soo
,
S. L.
,
Aspinwall
,
D. K.
,
Andrews
,
P.
, and
Sage
,
C.
,
2011
, “
Twist Drilling of Haynes 282 Superalloy
,”
Procedia CIRP
,
19
(
1
), pp.
150
155
.
49.
Hood
,
R.
,
Soo
,
S. L.
,
Aspinwall
,
D. K.
,
Andrews
,
P.
, and
Sage
,
C.
,
2012
, “
Radius end Milling of Haynes 282 Nickel Based Superalloy
,”
Proc. Inst. Mech. Eng. B
,
226
(
10
), pp.
1745
1753
.
50.
Hoier
,
P.
,
Malakizadi
,
A.
,
Stuppa
,
P.
,
Cedergren
,
S.
, and
Klement
,
U.
,
2018
, “
Microstructural Characteristics of Alloy 718 and Waspaloy and Their Influence on Flank Wear During Turning
,”
Wear
,
400
(
1
), pp.
184
193
.
51.
Polvorosa
,
R.
,
Suárez
,
A.
,
de Lacalle
,
L. L.
,
Cerrillo
,
I.
,
Wretland
,
A.
, and
Veiga
,
F.
,
2017
, “
Tool Wear on Nickel Alloys With Different Coolant Pressures: Comparison of Alloy 718 and Waspaloy
,”
J. Manuf. Process.
,
26
(
1
), pp.
44
56
.
52.
Kennedy
,
R.
,
2005
, “
Allvac 718Plus, Superalloy for the Next Forty Years
,”
Superalloys
,
718
(
706
), pp.
1
14
.
53.
Klocke
,
F.
,
Seimann
,
M.
,
Binder
,
M.
, and
Doebbeler
,
B.
,
2018
, “
Milling of Fir-Tree Slots in Allvac 718 Plus
,”
Procedia CIRP
,
77
(
1
), pp.
409
412
.
54.
Davis
,
J. R.
,
1997
,
ASM Specialty Handbook: Heat-Resistant Materials
,
ASM International
,
Materials Park
.
55.
Ezugwu
,
E. O.
,
Wang
,
Z. M.
, and
Machado
,
A. R.
,
1999
, “
The Machinability of Nickel-Based Alloys: A Review
,”
J. Mater. Process. Technol.
,
86
(
1–3
), pp.
1
16
.
56.
Davis
,
J. R.
,
2000
,
ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys
,
ASM International
,
Materials Park
.
57.
Goodfellow
,
A. J.
,
2018
, “
Strengthening Mechanisms in Polycrystalline Nickel-Based Superalloys
,”
Mater. Sci. Technol.
,
34
(
15
), pp.
1793
1808
.
58.
van Foreest
,
A.
,
Sippel
,
M.
,
Gülhan
,
A.
,
Esser
,
B.
,
Ambrosius
,
B. A. C.
, and
Sudmeijer
,
K.
,
2009
, “
Transpiration Cooling Using Liquid Water
,”
J. Thermophys. Heat Transfer
,
23
(
4
), pp.
693
702
.
59.
Davies
,
R. G.
, and
Stoloff
,
N. S.
,
1965
, “
On Yield Stress of Aged Ni-Al Alloys
,”
Trans. Metall. Soc. AIME
,
233
(
4
), p.
714
.
60.
Reed
,
R. C.
,
2008
,
The Superalloys: Fundamentals and Applications
,
Cambridge University Press
,
Cambridge
.
61.
Piearcey
,
B. J.
,
Kear
,
B. H.
, and
Smashey
,
R. W.
,
1967
, “
Correlation of Structure With Properties in a Directionally Solidified Nickel-Base Superalloy
,”
ASM Trans. Quart.
,
60
(
4
), pp.
634
645
.
62.
Eickemeyer
,
S. C.
,
Steinkamp
,
S.
,
Schuster
,
B.
,
Bodenhage
,
F.
, and
Nyhuis
,
P.
,
2014
, “
Reliable Capacity Planning Despite Uncertain Disassembly, Regeneration and Reassembly Workloads by Using Statistical and Mathematical Approaches—Validation in Subsidiaries of a Global MRO Company With Operations in Asia, Europe and North America
,”
Procedia CIRP
,
23
(
1
), pp.
252
257
.
63.
Breeze
,
P.
,
2016
,
Gas-Turbine Power Generation
,
Academic Press
,
Cambridge
.
64.
Zhao
,
J. C.
, and
Westbrook
,
J. H.
,
2003
, “
Ultrahigh-Temperature Materials for Jet Engines
,”
MRS Bull.
,
28
(
9
), pp.
622
630
.
65.
Soyama
,
H.
, and
Okura
,
Y.
,
2018
, “
The Use of Various Peening Methods to Improve the Fatigue Strength of Titanium Alloy Ti6Al4V Manufactured by Electron Beam Melting
,”
AIMS Mater. Sci
,
5
(
5
), pp.
1000
1015
.
66.
Ezugwu
,
E. O.
,
2005
, “
Key Improvements in the Machining of Difficult-to-Cut Aerospace Superalloys
,”
Int. J. Mach. Tools Manuf.
,
45
(
12–13
), pp.
1353
1367
.
67.
Kahles
,
J. F.
, and
Field
,
M.
,
1967
, “
Paper 4: Surface Integrity—A New Requirement for Surfaces Generated by Material-Removal Methods
,”
Proceedings of the Institution of Mechanical Engineers, Conference Proceedings
,
182
(
11
), pp.
31
45
.
68.
Yıldırım
,
Ç. V.
,
Kıvak
,
T.
,
Sarıkaya
,
M.
, and
Şirin
,
Ş.
,
2020
, “
Evaluation of Tool Wear, Surface Roughness/Topography and Chip Morphology When Machining of Ni-Based Alloy 625 Under MQL, Cryogenic Cooling and CryoMQL
,”
J. Mater. Res. Technol.
,
9
(
2
), pp.
2079
2092
.
69.
Devillez
,
A.
,
Le Coz
,
G.
,
Dominiak
,
S.
, and
Dudzinski
,
D.
,
2011
, “
Dry Machining of Inconel 718, Workpiece Surface Integrity
,”
J. Mater. Process. Technol.
,
211
(
10
), pp.
1590
1598
.
70.
Wang
,
B.
, and
Liu
,
Z.
,
2018
, “
Influences of Tool Structure, Tool Material and Tool Wear on Machined Surface Integrity During Turning and Milling of Titanium and Nickel Alloys: A Review
,”
Int. J. Adv. Manuf. Technol.
,
98
(
5
), pp.
1925
1975
.
71.
Liao
,
Z.
,
Polyakov
,
M.
,
Diaz
,
O. G.
,
Axinte
,
D.
,
Mohanty
,
G.
,
Maeder
,
X.
,
Michler
,
J.
, and
Hardy
,
M.
,
2019
, “
Grain Refinement Mechanism of Nickel-Based Superalloy by Severe Plastic Deformation—Mechanical Machining Case
,”
Acta Mater.
,
180
(
1
), pp.
2
14
.
72.
Pervaiz
,
S.
,
Rashid
,
A.
,
Deiab
,
I.
, and
Nicolescu
,
M.
,
2014
, “
Influence of Tool Materials on Machinability of Titanium- and Nickel-Based Alloys: A Review
,”
Mater. Manuf. Process.
,
29
(
3
), pp.
219
252
.
73.
Shao
,
S.
,
Khonsari
,
M. M.
,
Guo
,
S.
,
Meng
,
W. J.
, and
Li
,
N.
,
2019
, “
Overview: Additive Manufacturing Enabled Accelerated Design of Ni-Based Alloys for Improved Fatigue Life
,”
Addit. Manuf.
,
29
(
1
), p.
100779
.
74.
Suárez
,
A.
,
Veiga
,
F.
,
de Lacalle
,
L. N. L.
,
Polvorosa
,
R.
, and
Wretland
,
A.
,
2019
, “
An Investigation of Cutting Forces and Tool Wear in Turning of Haynes 282
,”
J. Manuf. Process.
,
37
(
1
), pp.
529
540
.
75.
Wstawska
,
I.
, and
Ślimak
,
K.
,
2016
, “
The Influence of Cooling Techniques on Cutting Forces and Surface Roughness During Cryogenic Machining of Titanium Alloys
,”
Arch. Mech. Technol. Mater.
,
36
(
1
), pp.
12
17
.
76.
Altin
,
A.
,
Nalbant
,
M.
, and
Taskesen
,
A.
,
2007
, “
The Effects of Cutting Speed on Tool Wear and Tool Life When Machining Inconel 718 With Ceramic Tools
,”
Mater. Des.
,
28
(
9
), pp.
2518
2522
.
77.
Pusavec
,
F.
,
Hamdi
,
H.
,
Kopac
,
J.
, and
Jawahir
,
I. S.
,
2011
, “
Surface Integrity in Cryogenic Machining of Nickel Based Alloy—Inconel 718
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
773
783
.
78.
Johnson
,
G. R.
,
1983
, “
A Constitutive Model and Data for Materials Subjected to Large Strains, High Strain Rates, and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
,
The Hague, The Netherlands
,
Apr 19–21
, pp.
541
547
.
79.
Melkote
,
S. N.
,
Grzesik
,
W.
,
Outeiro
,
J.
,
Rech
,
J.
,
Schulze
,
V.
,
Attia
,
H.
,
Arrazola
,
P.-J.
,
M’Saoubi
,
R.
, and
Saldana
,
C.
,
2017
, “
Advances in Material and Friction Data for Modelling of Metal Machining
,”
CIRP Ann.
,
66
(
2
), pp.
731
754
.
80.
Man
,
X.
,
Ren
,
D.
,
Usui
,
S.
,
Johnson
,
C.
, and
Marusich
,
T. D.
,
2012
, “
Validation of Finite Element Cutting Force Prediction for End Milling
,”
Procedia CIRP
,
1
(
1
), pp.
663
668
.
81.
Sadeghifar
,
M.
,
Sedaghati
,
R.
,
Jomaa
,
W.
, and
Songmene
,
V.
,
2018
, “
A Comprehensive Review of Finite Element Modeling of Orthogonal Machining Process: Chip Formation and Surface Integrity Predictions
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
3747
3791
.
82.
Bollig
,
P.
,
Faltin
,
C.
,
Schießl
,
R.
,
Schneider
,
J.
,
Maas
,
U.
, and
Schulze
,
V.
,
2015
, “
Considering the Influence of Minimum Quantity Lubrication for Modelling Changes in Temperature, Forces and Phase Transformations During Machining
,”
Procedia CIRP
,
31
(
1
), pp.
142
147
.
83.
Astakhov
,
V. P.
,
2006
,
Tribology of Metal Cutting
,
Elsevier Ltd.
,
Oxford
.
84.
Melkote
,
S. N.
,
Liu
,
R.
,
Fernandez-Zelaia
,
P.
, and
Marusich
,
T.
,
2015
, “
A Physically Based Constitutive Model for Simulation of Segmented Chip Formation in Orthogonal Cutting of Commercially Pure Titanium
,”
CIRP Ann.
,
64
(
1
), pp.
65
68
.
85.
Liu
,
H.
,
Xu
,
X.
,
Zhang
,
J.
,
Liu
,
Z.
,
He
,
Y.
,
Zhao
,
W.
, and
Liu
,
Z.
,
2022
, “
The State of the Art on Numerical Simulation of the Effect of Microstructure and Its Evolution in Metal-Cutting Processes
,”
Int. J. Mach. Tools Manuf.
,
177
(
1
), p.
103890
.
86.
Roters
,
F.
,
Eisenlohr
,
P.
,
Hantcherli
,
L.
,
Tjahjanto
,
D. D.
,
Bieler
,
T. R.
, and
Raabe
,
D.
,
2010
, “
Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications
,”
Acta Mater.
,
58
(
4
), pp.
1152
1211
.
87.
Kwong
,
J.
,
Axinte
,
D. A.
, and
Withers
,
P. J.
,
2009
, “
The Sensitivity of Ni-Based Superalloy to Hole Making Operations: Influence of Process Parameters on Subsurface Damage and Residual Stress
,”
J. Mater. Process. Technol.
,
209
(
8
), pp.
3968
3977
.
88.
Zhang
,
D.
,
Zhang
,
X.-M.
,
Nie
,
G.-C.
,
Yang
,
Z.-Y.
, and
Ding
,
H.
,
2021
, “
Characterization of Material Strain and Thermal Softening Effects in the Cutting Process
,”
Int. J. Mach. Tools Manuf.
,
160
(
1
), p.
103672
.
89.
Zhao
,
Y.
,
Sun
,
J.
,
Li
,
J.
,
Yan
,
Y.
, and
Wang
,
P.
,
2017
, “
A Comparative Study on Johnson–Cook and Modified Johnson–Cook Constitutive Material Model to Predict the Dynamic Behavior Laser Additive Manufacturing FeCr Alloy
,”
J. Alloys Compd.
,
723
(
1
), pp.
179
187
.
90.
Schoop
,
J.
,
Hasan
,
M. M.
, and
Zannoun
,
H.
,
2022
, “
Physics-Informed and Data-Driven Prediction of Residual Stress in Three-Dimensional Machining
,”
Exp. Mech.
,
62
(
8
), pp.
1461
1474
.
91.
Iturbe
,
A.
,
Giraud
,
E.
,
Hormaetxe
,
E.
,
Garay
,
A.
,
Germain
,
G.
,
Ostolaza
,
K.
, and
Arrazola
,
P. J.
,
2017
, “
Mechanical Characterization and Modelling of Inconel 718 Material Behavior for Machining Process Assessment
,”
Mater. Sci. Eng. A
,
682
(
1
), pp.
441
453
.
92.
Zhang
,
X.-M.
,
Zhang
,
K.
,
Zhang
,
D.
,
Outeiro
,
J.
, and
Ding
,
H.
,
2019
, “
New In Situ Imaging-Based Methodology to Identify the Material Constitutive Model Coefficients in Metal Cutting Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101007
.
93.
Abouridouane
,
M.
,
Klocke
,
F.
,
Lung
,
D.
, and
Veselovac
,
D.
,
2015
, “
The Mechanics of Cutting: In-Situ Measurement and Modelling
,”
Procedia CIRP
,
31
(
1
), pp.
246
251
.
94.
Davis
,
J. R.
,
1995
,
ASM Specialty Handbook: Tool Materials
,
ASM International
,
Materials Park
.
95.
DeMange
,
J. J.
,
Prakash
,
V.
, and
Pereira
,
J. M.
,
2009
, “
Effects of Material Microstructure on Blunt Projectile Penetration of a Nickel-Based Super Alloy
,”
Int. J. Impact Eng.
,
36
(
8
), pp.
1027
1043
.
96.
Özel
,
T.
,
Llanos
,
I.
,
Soriano
,
J.
, and
Arrazola
,
P.-J.
,
2011
, “
3D Finite Element Modelling of Chip Formation Process for Machining Inconel 718: Comparison of FE Software Predictions
,”
Mach. Sci. Technol.
,
15
(
1
), pp.
21
46
.
97.
Tian
,
P.
,
He
,
L.
,
Zhou
,
T.
,
Du
,
F.
,
Zou
,
Z.
,
Zhou
,
X.
, and
Jiang
,
H.
,
2022
, “
Reverse Identification of Constitutive Parameters of Inconel 718 Alloy Based on Analytical Model and Thermo-Mechanical Loads Analysis of Machined Surface
,”
J. Mater. Res. Technol.
,
16
(
1
), pp.
1353
1370
.
98.
Mitrofanov
,
A. V.
,
Babitsky
,
V. I.
, and
Silberschmidt
,
V. V.
,
2004
, “
Finite Element Analysis of Ultrasonically Assisted Turning of Inconel 718
,”
J. Mater. Process. Technol.
,
153–154
(
1
), pp.
233
239
.
99.
Hao
,
Z.
,
Li
,
J.
,
Fan
,
Y.
, and
Ji
,
F.
,
2019
, “
Study on Constitutive Model and Deformation Mechanism in High Speed Cutting Inconel718
,”
Arch. Civ. Mech. Eng.
,
19
(
2
), pp.
439
452
.
100.
Blumm
,
J.
,
Lindemann
,
A.
, and
Niedrig
,
B.
,
2003
, “
Measurement of the Thermophysical Properties of an NPL Thermal Conductivity Standard Inconel 600
,”
High Temperatures-High Pressures
,
35
(
36
).
101.
Zhang
,
X.
,
Chen
,
Z.
, and
Liu
,
Y.
,
2017
,
The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases
,
Elsevier, Inc.
,
Oxford
.
102.
Guo
,
Y. B.
,
Wen
,
Q.
, and
Woodbury
,
K. A.
,
2005
, “
Dynamic Material Behavior Modeling Using Internal State Variable Plasticity and Its Application in Hard Machining Simulations
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
749
759
.
103.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
275
288
.
104.
Rotella
,
G.
, and
Umbrello
,
D.
,
2014
, “
Finite Element Modeling of Microstructural Changes in Dry and Cryogenic Cutting of Ti6Al4V Alloy
,”
CIRP Ann.
,
63
(
1
), pp.
69
72
.
105.
Denguir
,
L. A.
,
Outeiro
,
J. C.
,
Fromentin
,
G.
,
Vignal
,
V.
, and
Besnard
,
R.
,
2017
, “
A Physical-Based Constitutive Model for Surface Integrity Prediction in Machining of OFHC Copper
,”
J. Mater. Process. Technol.
,
248
(
1
), pp.
143
160
.
106.
Cheng
,
W.
,
Outeiro
,
J.
,
Costes
,
J.-P.
,
M’Saoubi
,
R.
,
Karaouni
,
H.
, and
Astakhov
,
V.
,
2019
, “
A Constitutive Model for Ti6Al4V Considering the State of Stress and Strain Rate Effects
,”
Mech. Mater.
,
137
(
1
), p.
103103
.
107.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2008
, “
A New Model of Metal Plasticity and Fracture With Pressure and Lode Dependence
,”
Int. J. Plast.
,
24
(
6
), pp.
1071
1096
.
108.
Jaspers
,
S. P. F. C.
, and
Dautzenberg
,
J. H.
,
2002
, “
Material Behaviour in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone
,”
J. Mater. Process. Technol.
,
122
(
2
), pp.
322
330
.
109.
Childs
,
T. H. C.
, and
Rahmad
,
R.
,
2009
, “
Modelling Orthogonal Machining of Carbon Steels. Part II: Comparisons With Experiments
,”
Int. J. Mech. Sci.
,
51
(
6
), pp.
465
472
.
110.
Lin
,
Y. C.
, and
Chen
,
X.-M.
,
2010
, “
A Combined Johnson–Cook and Zerilli–Armstrong Model for Hot Compressed Typical High-Strength Alloy Steel
,”
Comput. Mater. Sci.
,
49
(
3
), pp.
628
633
.
111.
Zerilli
,
F. J.
,
2004
, “
Dislocation Mechanics-Based Constitutive Equations
,”
Metall. Mater. Trans. A
,
35
(
9
), pp.
2547
2555
.
112.
Bobbili
,
R.
,
Ramakrishna
,
B.
, and
Madhu
,
V.
,
2017
, “
Dynamic Compressive Behavior and Fracture Modeling of Titanium Alloy IMI 834
,”
J. Alloys Compd.
,
714
(
1
), pp.
225
231
.
113.
Kotkunde
,
N.
,
Deole
,
A. D.
,
Gupta
,
A. K.
, and
Singh
,
S. K.
,
2014
, “
Comparative Study of Constitutive Modeling for Ti–6Al–4V Alloy at Low Strain Rates and Elevated Temperatures
,”
Mater. Des.
,
55
(
1
), pp.
999
1005
.
114.
Kotkunde
,
N.
,
Srinivasan
,
S.
,
Krishna
,
G.
,
Gupta
,
A. K.
, and
Singh
,
S. K.
,
2016
, “
Influence of Material Models on Theoretical Forming Limit Diagram Prediction for Ti–6Al–4V Alloy Under Warm Condition
,”
Trans. Nonferrous Met. Soc. China
,
26
(
3
), pp.
736
746
.
115.
Oxley
,
P. L. B.
,
1963
, “
Mechanics of Metal Cutting for a Material of Variable Flow Stress
,”
J. Eng. Ind.
,
85
(
4
), pp.
339
345
.
116.
Stevenson
,
M.
, and
Oxley
,
P.
,
1969
, “
An Experimental Investigation of the Influence of Speed and Scale on the Strain-Rate in a Zone of Intense Plastic Deformation
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
561
576
.
117.
Shi
,
B.
, and
Attia
,
H.
,
2010
, “
Current Status and Future Direction in the Numerical Modeling and Simulation of Machining Processes: A Critical Literature Review
,”
Mach. Sci. Technol.
,
14
(
2
), pp.
149
188
.
118.
Gurusamy
,
M. M.
, and
Rao
,
B. C.
,
2017
, “
On the Performance of Modified Zerilli-Armstrong Constitutive Model in Simulating the Metal-Cutting Process
,”
J. Manuf. Process.
,
28
(
Part 1
), pp.
253
265
.
119.
Jaspers
,
S.
,
1999
,
Metal Cutting Mechanics and Material Behaviour
,
Technische Universiteit Eindhoven
,
Eindhoven, The Netherlands
.
120.
Adibi-Sedeh
,
A. H.
,
Vaziri
,
M.
,
Pednekar
,
V.
,
Madhavan
,
V.
, and
Ivester
,
R.
,
2005
, “
Investigation of the Effect of Using Different Material Models on Finite Element Simulations of Machining
,”
8th CIRP International Workshop on Modeling of Machining Operations
,
Chemnitz, Germany
,
May 10–11
, pp.
215
224
.
121.
Oxley
,
P. L. B.
,
1990
, “
Mechanics of Machining: An Analytical Approach to Assessing Machinability
,”
ASME J. Appl. Mech.
,
57
(
1
), p. 253
122.
Maekawa
,
K.
,
Shirakashi
,
T.
, and
Usui
,
E.
,
1983
, “
Flow Stress of Low Carbon Steel at High Temperature and Strain Rate. II: Flow Stress Under Variable Temperature and Variable Strain Rate
,”
Bull. Jpn. Soc. Precis. Eng.
,
17
(
3
), pp.
167
172
.
123.
Liu
,
C.
,
Goel
,
S.
,
Llavori
,
I.
,
Stolf
,
P.
,
Giusca
,
C. L.
,
Zabala
,
A.
,
Kohlscheen
,
J.
,
Paiva
,
J. M.
,
Endrino
,
J. L.
,
Veldhuis
,
S. C.
, and
Fox Rabinovich
,
G. S.
,
2019
, “
Benchmarking of Several Material Constitutive Models for Tribology, Wear, and Other Mechanical Deformation Simulations of Ti6Al4V
,”
J. Mech. Behav. Biomed. Mater.
,
97
(
1
), pp.
126
137
.
124.
Styger
,
G.
,
Laubscher
,
R. F.
, and
Oosthuizen
,
G. A.
,
2014
, “
Effect of Constitutive Modeling During Finite Element Analysis of Machining-Induced Residual Stresses in Ti6Al4V
,”
Procedia CIRP
,
13
(
1
), pp.
294
301
.
125.
Shi
,
B.
, and
Attia
,
H.
,
2009
, “
Modeling the Thermal and Tribological Processes at the Tool–Chip Interface in Machining
,”
Mach. Sci. Technol.
,
13
(
2
), pp.
210
226
.
126.
Shirakashi
,
T.
, and
Usui
,
E.
,
1973
, “
Friction Characteristics on Tool Face in Metal Machining
,”
Bull. Jpn. Soc. Precis. Eng.
,
39
(
9
), pp.
966
972
.
127.
Attia
,
M. H.
, and
Kops
,
L.
,
2004
, “
A New Approach to Cutting Temperature Prediction Considering the Thermal Constriction Phenomenon in Multi-Layer Coated Tools
,”
CIRP Ann.
,
53
(
1
), pp.
47
52
.
128.
Sartkulvanich
,
P.
,
Altan
,
T.
, and
Göcmen
,
A.
,
2005
, “
Effects of Flow Stress and Friction Models in Finite Element Simulation Oforthogonal Cutting—A Sensitivity Analysis
,”
Mach. Sci. Technol.
,
9
(
1
), pp.
1
26
.
129.
Schilke
,
P. W.
,
2004
,
Advanced Gas Turbine Materials and Coatings
,
G.E. Energy
,
Schenectady, NY
.
130.
Warnecke
,
G.
,
1974
,
Fertigungstechnische Berichte: Spanbildung bei Metallischen Werkstoffen
, 1st ed.,
Technischer Verlag Resch
,
Gräfelfing (b. München)
.
131.
Muthu
,
E.
,
Senthamarai
,
K.
, and
Jayabal
,
S.
,
2012
, “
Finite Element Simulation in Machining of Inconel 718 Nickel Based Super Alloy
,”
Int. J. Adv. Eng. Appl.
,
5
(
3
), pp.
22
27
.
132.
Alloys International, Inc.
,
2021
, “
Inconel 718 Material Data Sheet
,”
Alloys International, Inc
., https://alloysintl.com/inventory/nickel-cobalt-alloys/inconel_718/
133.
Steel Tubes India
,
2019
, “
Inconel Alloy 600 Price Per kg
,”
Steel Tubes India
, https://www.stindia.com/inconel-alloy-600-625-718-price-per-kg-india.html
134.
Jafarian
,
F.
,
Umbrello
,
D.
, and
Jabbaripour
,
B.
,
2016
, “
Identification of New Material Model for Machining Simulation of Inconel 718 Alloy and the Effect of Tool Edge Geometry on Microstructure Changes
,”
Simul. Modell. Pract. Theory
,
66
(
1
), pp.
273
284
.
135.
Barge
,
M.
,
Hamdi
,
H.
,
Rech
,
J.
, and
Bergheau
,
J.-M.
,
2005
, “
Numerical Modelling of Orthogonal Cutting: Influence of Numerical Parameters
,”
J. Mater. Process. Technol.
,
164
(
1
), pp.
1148
1153
.
136.
Carroll
,
J. T.
, III
, and
Strenkowski
,
J. S.
,
1988
, “
Finite Element Models of Orthogonal Cutting With Application to Single Point Diamond Turning
,”
Int. J. Mech. Sci.
,
30
(
12
), pp.
899
920
.
137.
Xu
,
X.
,
Outeiro
,
J.
,
Zhang
,
J.
,
Xu
,
B.
,
Zhao
,
W.
, and
Astakhov
,
V.
,
2021
, “
Machining Simulation of Ti6Al4V Using Coupled Eulerian-Lagrangian Approach and a Constitutive Model Considering the State of Stress
,”
Simul. Modell. Pract. Theory
,
110
(
1
), p.
102312
.
138.
Marusich
,
T. D.
, and
Ortiz
,
M.
,
1995
, “
Modelling and Simulation of High-Speed Machining
,”
Int. J. Numer. Methods Eng.
,
38
(
21
), pp.
3675
3694
.
139.
da Silva
,
F. A. V.
, and
Outeiro
,
J. C.
,
2021
, “
Machining Simulation of Inconel 718 Using Lagrangian and Coupled Eulerian-Lagrangian Approaches
,”
Procedia CIRP
,
102
(
1
), pp.
453
458
.
140.
Bergs
,
T.
,
Abouridouane
,
M.
,
Meurer
,
M.
, and
Peng
,
B.
,
2021
, “
Digital Image Correlation Analysis and Modelling of the Strain Rate in Metal Cutting
,”
CIRP Ann.
,
70
(
1
), pp.
45
48
.
141.
Ding
,
H.
, and
Shin
,
Y. C.
,
2014
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041003
.
142.
da Silva
,
F. A. V.
,
Denguir
,
L. A.
, and
Outeiro
,
J. C.
,
2020
, “
Residual Stresses Prediction in Machining of Inconel 718 Superalloy Using a Constitutive Model Considering the State of Stress
,”
Procedia CIRP
,
87
(
1
), pp.
527
532
.
143.
Algarni
,
M.
,
Bai
,
Y.
, and
Choi
,
Y.
,
2015
, “
A Study of Inconel 718 Dependency on Stress Triaxiality and Lode Angle in Plastic Deformation and Ductile Fracture
,”
Eng. Fract. Mech.
,
147
(
1
), pp.
140
157
.
144.
Jafarian
,
F.
,
Ciaran
,
M. I.
,
Umbrello
,
D.
,
Arrazola
,
P. J.
,
Filice
,
L.
, and
Amirabadi
,
H.
,
2014
, “
Finite Element Simulation of Machining Inconel 718 Alloy Including Microstructure Changes
,”
Int. J. Mech. Sci.
,
88
(
1
), pp.
110
121
.
145.
Wang
,
X.
,
Huang
,
C.
,
Zou
,
B.
,
Liu
,
H.
,
Zhu
,
H.
, and
Wang
,
J.
,
2013
, “
Dynamic Behavior and a Modified Johnson–Cook Constitutive Model of Inconel 718 at High Strain Rate and Elevated Temperature
,”
Mater. Sci. Eng. A
,
580
(
1
), pp.
385
390
.
146.
Pereira
,
J. M.
, and
Lerch
,
B. A.
,
2001
, “
Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications
,”
Int. J. Impact Eng.
,
25
(
8
), pp.
715
733
.
147.
Lorentzon
,
J.
,
Järvstråt
,
N.
, and
Josefson
,
B. L.
,
2009
, “
Modelling Chip Formation of Alloy 718
,”
J. Mater. Process. Technol.
,
209
(
10
), pp.
4645
4653
.
148.
Sievert
,
R.
,
Hamann
,
A. H.
,
Noack
,
D.
,
Löwe
,
P.
,
Singh
,
K. N.
, and
Künecke
,
G.
,
2005
, “
Simulation of Thermal Softening, Damage and Chip Segmentation in a Nickel Super-Alloy
,”
Hochgeschwindigkeitspannen
,
8
(
1
), pp.
446
469
.
149.
Del Prete
,
A.
,
Filice
,
L.
, and
Umbrello
,
D.
,
2013
, “
Numerical Simulation of Machining Nickel-Based Alloys
,”
Procedia CIRP
,
8
(
1
), pp.
540
545
.
150.
Uhlmann
,
E.
,
von der Schulenburg
,
M. G.
, and
Zettier
,
R.
,
2007
, “
Finite Element Modeling and Cutting Simulation of Inconel 718
,”
CIRP Ann.
,
56
(
1
), pp.
61
64
.
151.
Sievert
,
R.
,
Noack
,
H.-D.
,
Hamann
,
A.
,
Löwe
,
P.
,
Singh
,
K. N.
,
Künecke
,
G.
,
Clos
,
R.
, et al
,
2003
, “
Simulation der Spansegmentierung Beim Hochgeschwindigkeits-Zerspanen Unter Berücksichtigung Duktiler Schädigung
,”
Tech. Mech. Eur. J. Eng. Mech.
,
23
(
2–4
), pp.
216
233
.
152.
Olschewski
,
J.
,
Hamann
,
A.
, and
Noack
,
H. D.
,
2001
,
Werkstoffmechanik einer Nickelbasislegierung beim Hochgeschwindigkeitsspanen–Werkstoffverhalten und Modellierung, Teil III
, 2nd ed., Vol.
Report BAM-V.2 01/6
,
Bundesanstalt für Materialforschung und–prüfung
,
Berlin
.
153.
Mitrofanov
,
A. V.
,
Babitsky
,
V. I.
, and
Silberschmidt
,
V. V.
,
2005
, “
Thermomechanical Finite Element Simulations of Ultrasonically Assisted Turning
,”
Comput. Mater. Sci.
,
32
(
3–4
), pp.
463
471
.
154.
Klocke
,
F.
,
Lung
,
D.
, and
Buchkremer
,
S.
,
2013
, “
Inverse Identification of the Constitutive Equation of Inconel 718 and AISI 1045 From FE Machining Simulations
,”
Procedia CIRP
,
8
(
1
), pp.
212
217
.
155.
Puls
,
H.
,
Klocke
,
F.
, and
Lung
,
D.
,
2012
, “
A New Experimental Methodology to Analyse the Friction Behaviour at the Tool–Chip Interface in Metal Cutting
,”
Prod. Eng.
,
6
(
4–5
), pp.
349
354
.
156.
Mahalle
,
G.
,
Kotkunde
,
N.
,
Gupta
,
A. K.
,
Sujith
,
R.
,
Singh
,
S. K.
, and
Lin
,
Y. C.
,
2019
, “
Microstructure Characteristics and Comparative Analysis of Constitutive Models for Flow Stress Prediction of Inconel 718 Alloy
,”
J. Mater. Eng. Perform.
,
28
(
6
), pp.
3320
3331
.
157.
Grzesik
,
W.
,
Niesłony
,
P.
, and
Laskowski
,
P.
,
2017
, “
Determination of Material Constitutive Laws for Inconel 718 Superalloy Under Different Strain Rates and Working Temperatures
,”
J. Mater. Eng. Perform.
,
26
(
12
), pp.
5705
5714
.
158.
Qiu
,
X.
,
Cheng
,
X.
,
Dong
,
P.
,
Peng
,
H.
,
Xing
,
Y.
, and
Zhou
,
X.
,
2019
, “
Sensitivity Analysis of Johnson–Cook Material Constants and Friction Coefficient Influence on Finite Element Simulation of Turning Inconel 718
,”
Materials
,
12
(
19
), p.
3121
.
159.
Jafarian
,
F.
,
2019
, “
3D Modeling of Recrystallized Layer Depth and Residual Stress in Dry Machining of Nickel-Based Alloy
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
4
), pp.
1
10
.
160.
Zhu
,
Q.
,
Chen
,
L.
,
Chen
,
G.
,
Wang
,
C.
,
Qin
,
H.
, and
Zhang
,
P.
,
2022
, “
A Two-Stage Constitutive Model and Microstructure Evolution Simulation of a Nickel-Based Superalloy During High Temperature Deformation
,”
J. Mater. Eng. Perform.
,
1
(
1
), pp.
1
12
.
161.
Thimm
,
B.
,
Steden
,
J.
,
Reuber
,
M.
, and
Christ
,
H.-J.
,
2019
, “
Using Digital Image Correlation Measurements for the Inverse Identification of Constitutive Material Parameters Applied in Metal Cutting Simulations
,”
Procedia CIRP
,
82
(
1
), pp.
95
100
.
162.
Demir
,
E.
, and
Mercan
,
C.
,
2018
, “
A Physics-Based Single Crystal Plasticity Model for Crystal Orientation and Length Scale Dependence of Machining Response
,”
Int. J. Mach. Tools Manuf.
,
134
(
1
), pp.
25
41
.
163.
Rinaldi
,
S.
,
Umbrello
,
D.
,
Rotella
,
G.
, and
Del Prete
,
A.
,
2020
, “
A Physically Based Model to Predict Microstructural Modifications in Inconel 718 High Speed Machining
,”
Procedia Manuf.
,
47
(
1
), pp.
487
492
.
164.
Guan
,
Q.
,
Lu
,
S.
,
Lu
,
Y.
, and
Li
,
J.
,
2022
, “
Study on the Modified Power-Law Constitutive Model for the FEM Cutting Simulation of Inconel 625 Deposited Metal Using the Electroslag Welding Process
,”
J. Manuf. Process.
,
81
(
1
), pp.
881
892
.
165.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
.
166.
Oxley
,
P. L. B.
, and
Shaw
,
M. C.
,
1990
, “
Mechanics of Machining: An Analytical Approach to Assessing Machinability
,”
ASME J. Appl. Mech.
,
57
(
1
) p.
253
.
167.
Samantaray
,
D.
,
Mandal
,
S.
,
Borah
,
U.
,
Bhaduri
,
A. K.
, and
Sivaprasad
,
P. V.
,
2009
, “
A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel
,”
Mater. Sci. Eng. A
,
526
(
1–2
), pp.
1
6
.
168.
Liu
,
Y.
,
Li
,
M.
,
Ren
,
X.-W.
,
Xiao
,
Z.-B.
,
Zhang
,
X.-Y.
, and
Huang
,
Y.-C.
,
2020
, “
Flow Stress Prediction of Hastelloy C-276 Alloy Using Modified Zerilli−Armstrong, Johnson−Cook and Arrhenius-Type Constitutive Models
,”
Trans. Nonferrous Met. Soc. China
,
30
(
11
), pp.
3031
3042
.
169.
Follansbee
,
P.
, and
Kocks
,
U.
,
1988
, “
A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable
,”
Acta Metall.
,
36
(
1
), pp.
81
93
.
170.
Feng
,
Y.
,
Mandal
,
S.
,
Gockel
,
B.
, and
Rollett
,
A. D.
,
2017
, “
Extension of the Mechanical Threshold Stress Model to Static and Dynamic Strain Aging: Application to AA5754-O
,”
Metall. Mater. Trans. A
,
48
(
11
), pp.
5591
5607
.
171.
Follansbee
,
P. S.
,
2022
, “
Application of the Mechanical Threshold Stress Model to Large Strain Processing
,”
Mater. Sci. Appl.
,
13
(
5
), pp.
300
316
.
172.
Liu
,
R.
,
Salahshoor
,
M.
,
Melkote
,
S.
, and
Marusich
,
T.
,
2015
, “
A Unified Material Model Including Dislocation Drag and Its Application to Simulation of Orthogonal Cutting of OFHC Copper
,”
J. Mater. Process. Technol.
,
216
(
1
), pp.
328
338
.
173.
Rinaldi
,
S.
,
Umbrello
,
D.
, and
Melkote
,
S. N.
,
2021
, “
Modelling the Effects of Twinning and Dislocation Induced Strengthening in Orthogonal Micro and Macro Cutting of Commercially Pure Titanium
,”
Int. J. Mech. Sci.
,
190
(
1
), p.
106045
.
174.
Atmani
,
Z.
,
Haddag
,
B.
,
Nouari
,
M.
, and
Zenasni
,
M.
,
2016
, “
Combined Microstructure-Based Flow Stress and Grain Size Evolution Models for Multi-Physics Modelling of Metal Machining
,”
Int. J. Mech. Sci.
,
118
(
1
), pp.
77
90
.
175.
Estrin
,
Y.
,
Tóth
,
L. S.
,
Molinari
,
A.
, and
Bréchet
,
Y.
,
1998
, “
A Dislocation-Based Model for All Hardening Stages in Large Strain Deformation
,”
Acta Mater.
,
46
(
15
), pp.
5509
5522
.
176.
Komanduri
,
R.
, and
Hou
,
Z.-B.
,
2002
, “
On Thermoplastic Shear Instability in the Machining of a Titanium Alloy (Ti–6Al–4V)
,”
Metall. Mater. Trans. A
,
33
(
9
), pp.
2995
3010
.
177.
Sima
,
M.
, and
Özel
,
T.
,
2010
, “
Modified Material Constitutive Models for Serrated Chip Formation Simulations and Experimental Validation in Machining of Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
943
960
.
178.
Menezes
,
P. L.
,
Avdeev
,
I. V.
,
Lovell
,
M. R.
, and
Higgs
,
C. F.
, III
,
2014
, “
An Explicit Finite Element Model to Study the Influence of Rake Angle and Friction During Orthogonal Metal Cutting
,”
Int. J. Adv. Manuf. Technol.
,
73
(
5
), pp.
875
885
.
179.
Daoud
,
M.
,
Jomaa
,
W.
,
Chatelain
,
J. F.
, and
Bouzid
,
A.
,
2015
, “
A Machining-Based Methodology to Identify Material Constitutive Law for Finite Element Simulation
,”
Int. J. Adv. Manuf. Technol.
,
77
(
9
), pp.
2019
2033
.
180.
Shi
,
B.
,
Attia
,
H.
, and
Tounsi
,
N.
,
2010
, “
Identification of Material Constitutive Laws for Machining—Part I: An Analytical Model Describing the Stress, Strain, Strain Rate, and Temperature Fields in the Primary Shear Zone in Orthogonal Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051008
.
181.
Daoud
,
M.
,
Chatelain
,
J. F.
, and
Bouzid
,
A.
,
2015
, “
Effect of Rake Angle on Johnson–Cook Material Constants and Their Impact on Cutting Process Parameters of Al2024-T3 Alloy Machining Simulation
,”
Int. J. Adv. Manuf. Technol.
,
81
(
9
), pp.
1987
1997
.
182.
Li
,
J. L.
,
Liu
,
G.
,
Zhang
,
D. J.
, and
Chen
,
M. W.
,
2008
, “
A FEM Study on Chip Formation in Orthogonal Turning Nickel-Based Superalloy GH80A
,”
Mater. Sci. Forum
,
575–578
(
1
), pp.
1370
1375
.
183.
Bäker
,
M.
,
2006
, “
Finite Element Simulation of High-Speed Cutting Forces
,”
J. Mater. Process. Technol.
,
176
(
1–3
), pp.
117
126
.
184.
Jomaa
,
W.
,
Daoud
,
M.
,
Songmene
,
V.
,
Bocher
,
P.
, and
Châtelain
,
J.-F.
,
2014
, “
Identification and Validation of Marusich’s Constitutive Law for Finite Element Modeling of High Speed Machining
,”
ASME International Mechanical Engineering Congress and Exposition
,
Montreal, Quebec, Canada
,
Nov. 14–20
, Vol. 46438, p. V02AT02A057.
185.
Zhang
,
D.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2018
, “
Inverse Identification of Material Plastic Constitutive Parameters Based on the DIC Determined Workpiece Deformation Fields in Orthogonal Cutting
,”
Procedia CIRP
,
71
(
1
), pp.
134
139
.
186.
Majumdar
,
P.
,
Jayaramachandran
,
R.
, and
Ganesan
,
S.
,
2005
, “
Finite Element Analysis of Temperature Rise in Metal Cutting Processes
,”
Appl. Therm. Eng.
,
25
(
14–15
), pp.
2152
2168
.
187.
Özel
,
T.
, and
Zeren
,
E.
,
2007
, “
Finite Element Modeling the Influence of Edge Roundness on the Stress and Temperature Fields Induced by High-Speed Machining
,”
Int. J. Adv. Manuf. Technol.
,
35
(
3
), pp.
255
267
.
188.
Al-Zkeri
,
I.
,
Rech
,
J.
,
Altan
,
T.
,
Hamdi
,
H.
, and
Valiorgue
,
F.
,
2009
, “
Optimization of the Cutting Edge Geometry of Coated Carbide Tools in Dry Turning of Steels Using a Finite Element Analysis
,”
Mach. Sci. Technol.
,
13
(
1
), pp.
36
51
.
189.
Ucun
,
İ.
, and
Aslantas
,
K.
,
2011
, “
Numerical Simulation of Orthogonal Machining Process Using Multilayer and Single-Layer Coated Tools
,”
Int. J. Adv. Manuf. Technol.
,
54
(
9
), pp.
899
910
.
190.
Yen
,
Y.-C.
,
Jain
,
A.
,
Chigurupati
,
P.
,
Wu
,
W.-T.
, and
Altan
,
T.
,
2004
, “
Computer Simulation of Orthogonal Cutting Using a Tool With Multiple Coatings
,”
Mach. Sci. Technol.
,
8
(
2
), pp.
305
326
.
191.
Yuan
,
K.
,
Guo
,
W.
,
Li
,
D.
,
Li
,
P.
,
Zhang
,
Y.
, and
Wang
,
P.
,
2021
, “
Influence of Heat Treatments on Plastic Flow of Laser Deposited Inconel 718: Testing and Microstructural Based Constitutive Modeling
,”
Int. J. Plast.
,
136
(
1
), p.
102865
.
192.
Ghorbanpour
,
S.
,
Zecevic
,
M.
,
Kumar
,
A.
,
Jahedi
,
M.
,
Bicknell
,
J.
,
Jorgensen
,
L.
,
Beyerlein
,
I. J.
, and
Knezevic
,
M.
,
2017
, “
A Crystal Plasticity Model Incorporating the Effects of Precipitates in Superalloys: Application to Tensile, Compressive, and Cyclic Deformation of Inconel 718
,”
Int. J. Plast.
,
99
(
1
), pp.
162
185
.
193.
Tan
,
Y. B.
,
Ma
,
Y. H.
, and
Zhao
,
F.
,
2018
, “
Hot Deformation Behavior and Constitutive Modeling of Fine Grained Inconel 718 Superalloy
,”
J. Alloys Compd.
,
741
(
1
), pp.
85
96
.
194.
Voyiadjis
,
G. Z.
, and
Song
,
Y.
,
2020
, “
A Physically Based Constitutive Model for Dynamic Strain Aging in Inconel 718 Alloy at a Wide Range of Temperatures and Strain Rates
,”
Acta Mech.
,
231
(
1
), pp.
19
34
.
195.
Sharpe
,
W.
,
2008
,
Springer Handbook of Experimental Solid Mechanics
,
Springer Science & Business Media
,
New York
.
196.
Osorio-Pinzon
,
J. C.
,
Abolghasem
,
S.
, and
Casas-Rodriguez
,
J. P.
,
2019
, “
Predicting the Johnson Cook Constitutive Model Constants Using Temperature Rise Distribution in Plane Strain Machining
,”
Int. J. Adv. Manuf. Technol.
,
105
(
1
), pp.
279
294
.
197.
Jomaa
,
W.
,
Songmene
,
V.
, and
Bocher
,
P.
,
2016
, “
An Hybrid Approach Based on Machining and Dynamic Tests Data for the Identification of Material Constitutive Equations
,”
J. Mater. Eng. Perform.
,
25
(
3
), pp.
1010
1027
.
198.
Zouabi
,
H.
,
Calamaz
,
M.
,
Wagner
,
V.
,
Cahuc
,
O.
, and
Dessein
,
G.
,
2021
, “
Kinematic Fields Measurement During Orthogonal Cutting Using Digital Images Correlation: A Review
,”
J. Manuf. Mater. Process.
,
5
(
1
), p.
7
.
199.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1999
, “
An Evaluation of Ploughing Models for Orthogonal Machining
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
550
558
.
200.
Oxley
,
P. L. B.
, and
Welsh
,
M. J. M.
,
1964
, “
Calculating the Shear Angle in Orthogonal Metal Cutting From Fundamental Stress–Strain–Strain Rate Properties of the Work Material
,” CoA. Notes: Prod. and Ind. Admin. (1963–1969).
201.
Oxley
,
P.
, and
Hastings
,
W.
,
1977
, “
Predicting the Strain Rate in the Zone of Intense Shear in Which the Chip Is Formed in Machining From the Dynamic Flow Stress Properties of the Work Material and the Cutting Conditions
,”
Proc. R. Soc. A
,
356
(
1686
), pp.
395
410
.
202.
Loewen
,
E. G.
, and
Shaw
,
M. C.
,
1954
, “
On the Analysis of Cutting-Tool Temperatures
,”
Trans. Am. Soc. Mech. Eng.
,
76
(
2
), pp.
217
225
.
203.
Rai
,
A. K.
,
Trpathy
,
H.
,
Hajra
,
R. N.
,
Raju
,
S.
, and
Saroja
,
S.
,
2017
, “
Thermophysical Properties of Ni Based Super Alloy 617
,”
J. Alloys Compd.
,
698
(
1
), pp.
442
450
.
204.
Abdel-Aal
,
H. A.
,
Nouari
,
M.
, and
El Mansori
,
M.
,
2009
, “
Influence of Thermal Conductivity on Wear When Machining Titanium Alloys
,”
Tribol. Int.
,
42
(
2
), pp.
359
372
.
205.
Louzguine-Luzgin
,
D. V.
,
Setyawan
,
A. D.
,
Kato
,
H.
, and
Inoue
,
A.
,
2006
, “
Influence of Thermal Conductivity on the Glass-Forming Ability of Ni-Based and Cu-Based Alloys
,”
Appl. Phys. Lett.
,
88
(
25
), p.
251902
.
206.
MatWeb, LLC.
,
2021
, “
Special Metals INCONEL® Alloy 718
,” http://www.matweb.com/search/DataSheet.aspx?MatGUID=94950a2d209040a09b89952d45086134
207.
MatWeb, LLC.
,
2021
, “
Special Metals INCONEL® Alloy 600
,” http://www.matweb.com/search/datasheet.aspx?matguid=029d44b293ee41a1926d8de74e6369bc
210.
High Temp Metals
,
2015
, “
Inconel 600 Technical Data
,” https://www.hightempmetals.com/techdata/hitempInconel600data.php
211.
MatWeb, LLC.
,
2021
, “
Haynes Hastelloy® B-2 Alloy, 6.4 mm Thick, as Manual gas Tungsten arc Welded
,” http://www.matweb.com/search/DataSheet.aspx?MatGUID=6d126a1c146f4063bc0ed82523d4cae3
212.
Special Metals Corporation
,
2005
, “
MONEL® Alloy 400
,” https://www.specialmetals.com/documents/technical-bulletins/monel-alloy-400.pdf
213.
Roy
,
R.
,
Agrawal
,
D. K.
, and
McKinstry
,
H. A.
,
1989
, “
Very Low Thermal Expansion Coefficient Materials
,”
Annu. Rev. Mater. Sci.
,
19
(
1
), pp.
59
81
.
214.
Jablonski
,
P. D.
, and
Alman
,
D. E.
,
2007
, “
Oxidation Resistance and Mechanical Properties of Experimental Low Coefficient of Thermal Expansion (CTE) Ni-Base Alloys
,”
Int. J. Hydrogen Energy
,
32
(
16
), pp.
3705
3712
.
215.
Monroe
,
J. A.
,
Gehring
,
D.
,
Karaman
,
I.
,
Arroyave
,
R.
,
Brown
,
D. W.
, and
Clausen
,
B.
,
2016
, “
Tailored Thermal Expansion Alloys
,”
Acta Mater.
,
102
(
1
), pp.
333
341
.
216.
Karunaratne
,
M. S. A.
,
Kyaw
,
S.
,
Jones
,
A.
,
Morrell
,
R.
, and
Thomson
,
R. C.
,
2016
, “
Modelling the Coefficient of Thermal Expansion in Ni-Based Superalloys and Bond Coatings
,”
J. Mater. Sci.
,
51
(
9
), pp.
4213
4226
.
217.
Valencia
,
J. J.
, and
Quested
,
P. N.
,
2013
, “Thermophysical Properties,”
Modeling for Casting and Solidification Processing
,
K-G
Yu
, ed.,
Marcel Dekker, Inc.
,
New York
.
218.
Salazar
,
A.
,
2003
, “
On Thermal Diffusivity
,”
Eur. J. Phys.
,
24
(
4
), p.
351
358
.
219.
Parker
,
W. J.
,
Jenkins
,
R. J.
,
Butler
,
C. P.
, and
Abbott
,
G. L.
,
1961
, “
Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity
,”
J. Appl. Phys.
,
32
(
9
), pp.
1679
1684
.
220.
Arunachalam
,
R. M.
,
Mannan
,
M. A.
, and
Spowage
,
A. C.
,
2004
, “
Residual Stress and Surface Roughness When Facing Age Hardened Inconel 718 With CBN and Ceramic Cutting Tools
,”
Int. J. Mach. Tools Manuf.
,
44
(
9
), pp.
879
887
.
221.
Salazar
,
A.
,
Sánchez-Lavega
,
A.
, and
Fernández
,
J.
,
1989
, “
Theory of Thermal Diffusivity Determination by the “Mirage” Technique in Solids
,”
J. Appl. Phys.
,
65
(
11
), pp.
4150
4156
.
222.
Arrazola
,
P. J.
, and
Özel
,
T.
,
2009
,
Intelligent Machining: Modelling and Optimization of the Machining Processes and Systems
,
Wiley & Sons, Inc.
,
New York
.
223.
Dudzinski
,
D.
,
Devillez
,
A.
,
Moufki
,
A.
,
Larrouquère
,
D.
,
Zerrouki
,
V.
, and
Vigneau
,
J.
,
2004
, “
A Review of Developments Towards Dry and High Speed Machining of Inconel 718 Alloy
,”
Int. J. Mach. Tools Manuf.
,
44
(
4
), pp.
439
456
.
224.
Nieslony
,
P.
,
Grzesik
,
W.
,
Laskowski
,
P.
, and
Habrat
,
W.
,
2013
, “
FEM-Based Modelling of the Influence of Thermophysical Properties of Work and Cutting Tool Materials on the Process Performance
,”
Procedia CIRP
,
8
(
1
), pp.
3
8
.
225.
Kalhori
,
V.
,
2001
,
Modelling and Simulation of Mechanical Cutting
,
Luleå University of Technology
,
Luleå
.
226.
Hariharan
,
V. S.
,
Pramod
,
S.
,
Kesavan
,
D.
,
Murty
,
B. S.
, and
Phanikumar
,
G.
,
2022
, “
ICME Framework to Simulate Microstructure Evolution During Laser Powder Bed Fusion of Haynes 282 Nickel-Based Superalloy
,”
J. Mater. Sci.
,
57
(
21
), pp.
9693
9713
.
227.
Schoop
,
J.
,
2021
, “
In-Situ Calibrated Modeling of Residual Stresses Induced in Machining Under Various Cooling and Lubricating Environments
,”
Lubricants
,
9
(
3
), p.
28
.
228.
Schoop
,
J.
,
Adeniji
,
D.
, and
Brown
,
I.
,
2019
, “
Computationally Efficient, Multi-Domain Hybrid Modeling of Surface Integrity in Machining and Related Thermomechanical Finishing Processes
,”
Procedia CIRP
,
82
(
1
), pp.
356
361
.
229.
Binoj
,
J. S.
,
Manikandan
,
N.
,
Thejasree
,
P.
,
Varaprasad
,
K. C.
,
Sai
,
N. P.
, and
Manideep
,
M.
,
2021
, “
Machinability Studies on Wire Electrical Discharge Machining of Nickel Alloys Using Multiple Regression Analysis
,”
Mater. Today: Proc.
,
39
(
1
), pp.
155
159
.
230.
Salcedo
,
A. T.
,
Arbizu
,
I. P.
, and
Pérez
,
C. J. L.
,
2017
, “
Analytical Modelling of Energy Density and Optimization of the EDM Machining Parameters of Inconel 600
,”
Metals
,
7
(
5
), p.
166
.
231.
Dinda
,
G. P.
,
Dasgupta
,
A. K.
, and
Mazumder
,
J.
,
2009
, “
Laser Aided Direct Metal Deposition of Inconel 625 Superalloy: Microstructural Evolution and Thermal Stability
,”
Mater. Sci. Eng. A
,
509
(
1–2
), pp.
98
104
.
232.
Al-Fadhli
,
H. Y.
,
Stokes
,
J.
,
Hashmi
,
M. S. J.
, and
Yilbas
,
B. S.
,
2006
, “
The Erosion–Corrosion Behaviour of High Velocity Oxy-Fuel (HVOF) Thermally Sprayed Inconel-625 Coatings on Different Metallic Surfaces
,”
Surf. Coat. Technol.
,
200
(
20–21
), pp.
5782
5788
.
233.
High Temp Metals
,
2015
, “
Inconel 625 Technical Data
,” https://www.hightempmetals.com/techdata/hitempInconel625data.php
234.
Thomas
,
A.
,
El-Wahabi
,
M.
,
Cabrera
,
J. M.
, and
Prado
,
J. M.
,
2006
, “
High Temperature Deformation of Inconel 718
,”
J. Mater. Process. Technol.
,
177
(
1–3
), pp.
469
472
.
235.
Ono
,
Y.
,
Yuri
,
T.
,
Sumiyoshi
,
H.
,
Takeuchi
,
E.
,
Matsuoka
,
S.
, and
Ogata
,
T.
,
2004
, “
High-Cycle Fatigue Properties at Cryogenic Temperatures in Inconel 718 Nickel-Based Superalloy
,”
Mater. Trans.
,
45
(
2
), pp.
342
345
.
236.
Ramkumar
,
K. D.
,
Abraham
,
W. S.
,
Viyash
,
V.
,
Arivazhagan
,
N.
, and
Rabel
,
A. M.
,
2017
, “
Investigations on the Microstructure, Tensile Strength and High Temperature Corrosion Behaviour of Inconel 625 and Inconel 718 Dissimilar Joints
,”
J. Manuf. Process.
,
25
(
1
), pp.
306
322
.
237.
Rahman
,
M.
,
Seah
,
W. K. H.
, and
Teo
,
T. T.
,
1997
, “
The Machinability of Inconel 718
,”
J. Mater. Process. Technol.
,
63
(
1–3
), pp.
199
204
.
238.
Devillez
,
A.
,
Schneider
,
F.
,
Dominiak
,
S.
,
Dudzinski
,
D.
, and
Larrouquere
,
D.
,
2007
, “
Cutting Forces and Wear in Dry Machining of Inconel 718 With Coated Carbide Tools
,”
Wear
,
262
(
7–8
), pp.
931
942
.
239.
High Temp Metals
,
2015
, “
Inconel 718 Technical Data
,” https://www.hightempmetals.com/techdata/hitempInconel718data.php
240.
Aytekin
,
H.
, and
Akçin
,
Y.
,
2013
, “
Characterization of Borided Incoloy 825 Alloy
,”
Mater. Des.
,
50
(
1
), pp.
515
521
.
241.
Kangazian
,
J.
, and
Shamanian
,
M.
,
2019
, “
Microstructure and Mechanical Characterization of Incoloy 825 Ni-Based Alloy Welded to 2507 Super Duplex Stainless Steel Through Dissimilar Friction Stir Welding
,”
Trans. Nonferrous Met. Soc. China
,
29
(
8
), pp.
1677
1688
.
242.
Bellezze
,
T.
,
Roventi
,
G.
, and
Fratesi
,
R.
,
2004
, “
Electrochemical Characterization of Three Corrosion-Resistant Alloys After Processing for Heating-Element Sheathing
,”
Electrochim. Acta
,
49
(
17–18
), pp.
3005
3014
.
243.
244.
Gangloff
,
R. P.
,
Ha
,
H. M.
,
Burns
,
J. T.
, and
Scully
,
J. R.
,
2014
, “
Measurement and Modeling of Hydrogen Environment-Assisted Cracking in Monel K-500
,”
Metall. Mater. Trans. A
,
45
(
9
), pp.
3814
3834
.
245.
Scully
,
J. R.
,
Gangloff
,
R. P.
, and
Moreno
,
F. P.
,
2012
, “
Mechanism-Based Modeling of Hydrogen Environment Assisted Cracking (HEAC) in High Strength Alloys for Marine Applications: Prediction of Monel K-500 HEAC for Select Environmental and Mechanical Conditions
,”
Virginia University Charottesville, Department of Materials Science and Engineering
, p.
142
.
246.
Ghadiri Zahrani
,
E.
, and
Sedghi
,
A.
,
2014
, “
Experimental Investigation of Precision Turning of Monel K-500 Under Dry Conditions
,”
Int. J. Adv. Manuf. Technol.
,
73
(
9
), pp.
1265
1272
.
247.
Atabay
,
S. E.
,
Sanchez-Mata
,
O.
,
Muñiz-Lerma
,
J. A.
,
Gauvin
,
R.
, and
Brochu
,
M.
,
2020
, “
Microstructure and Mechanical Properties of Rene 41 Alloy Manufactured by Laser Powder Bed Fusion
,”
Mater. Sci. Eng. A
,
773
(
1
), p.
138849
.
248.
Kayacan
,
R.
,
Varol
,
R.
, and
Kimilli
,
O.
,
2004
, “
The Effects of Pre- and Post-Weld Heat Treatment Variables on the Strain-Age Cracking in Welded Rene 41 Components
,”
Mater. Res. Bull.
,
39
(
14–15
), pp.
2171
2186
.
249.
Hack
,
H. P.
,
1975
, “
Mechanical, Corrosion, and Fatigue Properties of 15-5 pH, Inconel 718, and Rene 41 Weldments
.”
David W. Taylor Naval Ship Research and Development Center
, p.
44
.
250.
Maurer
,
J. J.
,
Mallett
,
J. J.
,
Hudson
,
J. L.
,
Fick
,
S. E.
,
Moffat
,
T. P.
, and
Shaw
,
G. A.
,
2010
, “
Electrochemical Micromachining of Hastelloy B-2 With Ultrashort Voltage Pulses
,”
Electrochim. Acta
,
55
(
3
), pp.
952
958
.
251.
Brooks
,
C. R.
, and
Wang
,
Y. M.
,
1990
, “
Tensile Properties and Fractography of Aged Hastelloy B2 (550–850 °C for Up To 1200 H)
,”
Mater. Charact.
,
25
(
2
), pp.
185
197
.
252.
Chen
,
J.
,
Zhou
,
X.
,
Wang
,
W.
,
Liu
,
B.
,
Lv
,
Y.
,
Yang
,
W.
,
Xu
,
D.
, and
Liu
,
Y.
,
2018
, “
A Review on Fundamental of High Entropy Alloys With Promising High–Temperature Properties
,”
J. Alloys Compd.
,
760
(
1
), pp.
15
30
.
253.
Cao
,
S.
,
Brooks
,
C. R.
, and
Whittaker
,
G.
,
1994
, “
The Structure of the Heat-Affected Zone in Welds of a Ni-29 wt% Mo Commercial Alloy (Hastelloy B2)
,”
Mater. Charact.
,
33
(
1
), pp.
21
32
.
254.
Haynes International, Inc.
,
1997
, “
HASTELLOY® B-2 Alloy
,” Material Data Sheet.
255.
Manoj
,
I. V.
,
Joy
,
R.
,
Narendranath
,
S.
, and
Nedelcu
,
D.
,
2019
, “
Investigation of Machining Parameters on Corner Accuracies for Slant Type Taper Triangle Shaped Profiles Using WEDM on Hastelloy X
,”
Modern Technologies in Industrial Engineering VII Conference
,
Iasi, Romania
,
June 19–22
, Vol. 591, p.
012022
.
256.
Swaminathan
,
B.
,
Lambros
,
J.
, and
Sehitoglu
,
H.
,
2014
, “
Digital Image Correlation Study of Mechanical Response of Nickel Superalloy Hastelloy X Under Thermal and Mechanical Cycling: Uniaxial and Biaxial Stress States
,”
J. Strain Anal. Eng. Des.
,
49
(
4
), pp.
233
243
.
257.
Sathishkumar
,
M.
, and
Manikandan
,
M.
,
2020
, “
Development of Pulsed Current Arc Welding to Preclude Carbide Precipitates in Hastelloy X Weldment Using ERNiCr-3
,”
J. Mater. Eng. Perform.
,
29
(
8
), pp.
5395
5408
.
258.
High Temp Metals
,
2015
, “
Hastelloy X Technical Data
,” Material Data Sheet.
259.
Yang
,
B.
,
Shang
,
Z.
,
Ding
,
J.
,
Lopez
,
J.
,
Jarosinski
,
W.
,
Sun
,
T.
,
Richter
,
N.
,
Zhang
,
Y.
,
Wang
,
H.
, and
Zhang
,
X.
,
2022
, “
Investigation of Strengthening Mechanisms in an Additively Manufactured Haynes 230 Alloy
,”
Acta Mater.
,
222
(
1
), p.
117404
.
260.
Haack
,
M.
,
Kuczyk
,
M.
,
Seidel
,
A.
,
López
,
E.
,
Brückner
,
F.
, and
Leyens
,
C.
,
2020
, “
Investigation on the Formation of Grain Boundary Serrations in Additively Manufactured Superalloy Haynes 230
,”
J. Laser Appl.
,
32
(
3
), p.
032014
.
261.
Lu
,
Y. L.
,
Chen
,
L. J.
,
Wang
,
G. Y.
,
Benson
,
M. L.
,
Liaw
,
P. K.
,
Thompson
,
S. A.
,
Blust
,
J. W.
, et al
,
2005
, “
Hold Time Effects on Low Cycle Fatigue Behavior of HAYNES 230® Superalloy at High Temperatures
,”
Mater. Sci. Eng. A
,
409
(
1–2
), pp.
282
291
.
262.
High Temp Metals
,
2015
, “
Haynes 230 Technical Data
,” https://www.hightempmetals.com/techdata/hitempHaynes230data.php
263.
Zuo
,
Q.
,
Liu
,
F.
,
Wang
,
L.
,
Chen
,
C.
, and
Zhang
,
Z.
,
2015
, “
Prediction of Hot Deformation Behavior in Ni-Based Alloy Considering the Effect of Initial Microstructure
,”
Prog. Nat. Sci.: Mater. Int.
,
25
(
1
), pp.
66
77
.
264.
Lin
,
Y. C.
,
Chen
,
M.-S.
, and
Zhong
,
J.
,
2008
, “
Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate
,”
Mech. Res. Commun.
,
35
(
3
), pp.
142
150
.
265.
Garofalo
,
F.
,
1965
,
Fundamentals of Creep and Creep-Rupture in Metals (Creep and Creep Rupture in Metals and Alloys, Fundamental Information for Instruction and Reference)
,
Macmillan Co./Collier-Macmillan, Ltd.
,
New York/London
, p.
258
.
266.
Zener
,
C.
, and
Hollomon
,
J. H.
,
1944
, “
Effect of Strain Rate Upon Plastic Flow of Steel
,”
J. Appl. Phys.
,
15
(
1
), pp.
22
32
.
267.
Agatonovic-Kustrin
,
S.
, and
Beresford
,
R.
,
2000
, “
Basic Concepts of Artificial Neural Network (ANN) Modeling and Its Application in Pharmaceutical Research
,”
J. Pharm. Biomed. Anal.
,
22
(
5
), pp.
717
727
.
268.
Liu, J., Chang, H., Hsu, T. Y., and Ruan, X., 2000, “Prediction of the Flow Stress of High-Speed Steel During Hot Deformation Using a BP Artificial Neural Network,”
J. Mater. Process. Technol
. 103(2), pp.
200
-
205
. http://dx.doi.org/ 10.1016/S0924-0136(99)00444-6
269.
Amin
,
S.
,
2020
, “
Backpropagation-Artificial Neural Network (BP-ANN): Understanding Gender Characteristics of Older Driver Accidents in West Midlands of United Kingdom
,”
Saf. Sci.
,
122
(
1
), p.
104539
.
You do not currently have access to this content.